
The Multi2Sim
Simulation Framework

A CPU-GPU Model for Heterogeneous Computing
(For Multi2Sim v. 4.2)

List of authors contributing to the development of the
simulation framework and/or writing of this document.

Chris Barton, Northeastern University, Boston, MA, USA
Shu Chen, Northeastern University, Boston, MA, USA

Zhongliang Chen, Northeastern University, Boston, MA, USA
Tahir Diop, University of Toronto, ON, Canada

Xiang Gong, Northeastern University, Boston, MA, USA
Steven Gurfinkel, University of Toronto, ON, Canada
Byunghyun Jang, University of Mississippi, MS, USA

David Kaeli, Northeastern University, Boston, MA, USA
Pedro López, Universidad Politécnica de Valencia, Spain

Nicholas Materise, Northeastern University, Boston, MA, USA
Rustam Miftakhutdinov, University of Texas, Austin, TX, USA
Perhaad Mistry, Northeastern University, Boston, MA, USA
Salvador Petit, Universidad Politécnica de Valencia, Spain
Julio Sahuquillo, Universidad Politécnica de Valencia, Spain
Dana Schaa, Northeastern University, Boston, MA, USA

Sudhanshu Shukla, Indian Institute of Technology Kanpur, India
Rafael Ubal, Northeastern University, Boston, MA, USA
Yash Ukidave, Northeastern University, Boston, MA, USA
Mark Wilkening, Northeastern University, Boston, MA, USA

Norm Rubin, NVIDIA, Greater Boston Area, MA, USA
Ang Shen, Northeastern University, Boston, MA, USA

Tushar Swamy, Northeastern University, Boston, MA, USA
Amir Kavyan Ziabari, Northeastern University, Boston, MA, USA

2

Contents

1 Introduction 6
1.1 Organization of Multi2Sim’s Source Code . 6
1.2 The Four-Stage Architectural Model . 6
1.3 Full-System vs. Application-Only Emulation . 10
1.4 Frequency Domains . 12
1.5 Getting Started . 13

2 The x86 CPU Model 18
2.1 The x86 Simulation Paradigm . 18
2.2 The x86 Statistics Summary . 20
2.3 Compiling and Simulating Your Own Source Code . 21
2.4 The Processor Pipeline . 25
2.5 Branch Prediction . 26
2.6 Multiple Branch Prediction . 28
2.7 CISC Instructions Decoding . 29
2.8 Trace Cache . 30
2.9 The Fetch Stage . 34
2.10 The Decode Stage . 35
2.11 Integer Register Renaming . 36
2.12 Floating-Point Register Renaming . 37
2.13 The Dispatch Stage . 38
2.14 The Issue Stage . 38
2.15 The Writeback Stage . 39
2.16 The Commit Stage . 39
2.17 Support for Parallel Architectures . 39
2.18 Multithreading . 40
2.19 Multicore Architectures . 41
2.20 The Context Scheduler . 42
2.21 Statistics Report . 43

3 The MIPS-32 CPU Model 46
3.1 The MIPS Disassembler . 46
3.2 The MIPS Emulator . 47
3.3 Compiling your own Sources . 48
3.4 Roadmap—Next Features . 49

3

4 The ARM CPU model 50
4.1 The ARM Disassembler . 50
4.2 The ARM Emulator . 50
4.3 Compiling Your Own Sources . 53
4.4 Roadmap . 53

5 OpenCL Execution 54
5.1 The OpenCL Programming Model . 54
5.2 Runtime Libraries and Device Drivers . 55
5.3 The OpenCL Runtime . 60
5.4 The x86 Back-End . 63
5.5 The Southern Islands Back-End . 65
5.6 Legacy OpenCL Runtime . 66

6 The AMD Evergreen GPU Model 67
6.1 Mapping the OpenCL Model into an AMD Evergreen GPU 67
6.2 The Evergreen Instruction Set Architecture (ISA) . 68
6.3 The Evergreen GPU Device Architecture . 72
6.4 The Compute Unit Architecture . 74
6.5 The Evergreen GPU Memory Architecture . 81
6.6 The GPU Occupancy Calculator . 83
6.7 Trying it out . 84

7 The AMD Southern Islands GPU Model 89
7.1 Running an OpenCL Kernel on a Southern Islands GPU 89
7.2 The Southern Islands Instruction Set Architecture (ISA) 90
7.3 Functional Simulation . 91
7.4 Architectural Simulation . 92
7.5 Trying It Out . 101

8 The NVIDIA Fermi GPU Model 106
8.1 The Fermi Disassembler . 106
8.2 The Fermi Emulator . 107
8.3 Compiling Your Own Sources . 108
8.4 Roadmap . 109

9 The Memory Hierarchy 110
9.1 Memory Hierarchy Configuration . 110
9.2 Examples of Memory Hierarchy Configurations . 114
9.3 Default Configuration . 123
9.4 The NMOESI Cache Coherence Protocol . 123
9.5 Statistics Report . 129

10 Interconnection Networks 131
10.1 Model Description . 131
10.2 Communication Model . 132
10.3 Routing . 133
10.4 Network Configuration . 134
10.5 Example of Network Configuration . 135

4

10.6 Example of Manual Routing . 136
10.7 Example Using Virtual Channels . 139
10.8 Statistics Report . 141
10.9 Stand-Alone Network Simulation . 143

11 M2S-Visual: The Multi2Sim Visualization Tool 146
11.1 Introduction . 146
11.2 Main Window . 148
11.3 The x86 CPU Visualization . 149
11.4 The Evergreen GPU Visualization . 150
11.5 Memory Hierarchy Visualization . 151

12 M2S-Cluster: Launching Massive Simulations 153
12.1 Introduction . 153
12.2 Requirements . 153
12.3 Installation . 154
12.4 The Client Tool m2s-cluster.sh . 155
12.5 Automatic Creation of Clusters: Verification Scripts . 159
12.6 Benchmark Kits . 161
12.7 Usage Examples . 163

13 Multi2C: The Kernel Compiler 167
13.1 The OpenCL Compiler Front-End . 168
13.2 The Southern Islands Back-End . 169
13.3 The Southern Islands Assembler . 170
13.4 The AMD Compiler Wrapper . 173

14 Tools 177
14.1 The INI file format . 177
14.2 McPAT: Power, Area, and Timing Model . 179

15 Coding Guidelines 181
15.1 General Formatting Rules . 181
15.2 Source and Header Files . 185
15.3 Object-Oriented Programming . 188
15.4 Classes . 189

5

Chapter 1

Introduction

Multi2Sim is a simulation framework for CPU-GPU heterogeneous computing written in C. It includes
models for superscalar, multithreaded, and multicore CPUs, as well as GPU architectures. In this
chapter, an introduction to Multi2Sim is presented, and it is shown how to perform basic simulations
and extract performance results.
Throughout this document, the term guest will be used to refer to any property of the simulated
program, as opposed to the term host, used to refer to the simulator properties. For example, the
guest code is formed by instructions of the program whose execution is being simulated, whereas the
host code is the set of instructions executed by Multi2Sim natively in the user’s machine.

1.1 Organization of Multi2Sim’s Source Code
The Multi2Sim software package is organized in a directory structure as represented in Figure 1.1.
Directory images contains program icons. Directory runtime contains user-level runtime libraries linked
with user code before running on Multi2Sim. Directory samples contains sample programs and
configuration files to test the simulator. Directory tools includes additional command-line tools.
Finally, the src directory contains the C source code that compiles into a single executable file called
m2s.
The organization of subdirectories in src is similar to the structure of this document. Subdirectory
arch contains the implementation for each microprocessor architecture supported in Multi2Sim (x86,
evergreen, etc., described in Chapter 2 and following). Subdirectories mem-system (Chapter 9) and
network (Chapter 10) contain the implementation of the memory system and the interconnection
network models. And subdirectory visual (Chapter 11) includes the visualization tool, with one
lower-level subdirectory per microprocessor architecture.

1.2 The Four-Stage Architectural Model
The development of the model for a new microprocessor architecture on Multi2Sim consists of four
phases, represented in Figure 1.2 in order from left to right. The development phases involve the
design and implementation of four independent software modules: a disassembler, a functional
simulator, a detailed simulator, and a visual tool.
These four software modules communicate with each other with clearly defined interfaces, but can also
work independently. Each software component though requires previous (left) design modules to work
as a stand-alone tool. In this manner, the detailed simulator can operate by interacting with the
functional simulator and disassembler, and the functional simulator can likewise be used in isolation

6

Figure 1.1: Structure of Multi2Sim’s source code.

7

Figure 1.2: Multi2Sim’s simulation paradigm for a microprocessor architecture.

together with the disassembler. However, it is not possible to use the visual tool without the remaining
components.

Disassembler
Given a bit stream representing machine instructions for a specific instruction set architecture (ISA),
the goal of a disassembler is to decode these instructions into an alternative representation that allows
for a straightforward interpretation of the instruction fields, such as operation code, input/output
operands, or immediate constants.
Multi2Sim’s disassembler for a given microprocessor architecture can operate autonomously or serve
later simulation stages. In the first case, the disassembler reads directly from a program binary
generated by a compiler, such as an x86 application binary, and dumps a text-based output of all
fragments of ISA code found in the file. In the second case, the disassembler reads from a binary
buffer in memory, and outputs machine instructions one by one in the form of organized data
structures that split each instruction into its comprising fields.

Functional Simulator
The purpose of the functional simulator, also called the emulator, is to reproduce the original behavior
of a guest program, providing the illusion that it is running natively on a given microarchitecture. For
example, an ARM program binary can run on top of Multi2Sim’s ARM emulator. Even though
Multi2Sim runs on an x86 architecture, the ARM guest program provides the same output as if it ran
on a real ARM processor.
To accomplish this effect, an ISA emulator needs to keep track of the guest program state, and
dynamically update it instruction by instruction until the program finishes. The state of a program can
be most generally expressed as its virtual memory image and the architected register file. The virtual
memory image consists of the set of values stored at each possible memory location addressable by the
program. The state of the architected register file is formed of the values for each register defined in a
specific architecture (e.g., eax, ebx, ecx, ... in x86).
Given a program state associated with a specific point in its execution, the emulator is capable of
updating it to the next state after consuming one single ISA instruction. This process is done in 4
steps: i) the new instruction is read from the memory image containing the program’s code at that

8

Figure 1.3: Example of a 4-stage processor pipeline, illustrating the communication between the detailed
and functional simulators.

location pointed to by the instruction pointer architected register, ii) the instruction is decoded,
taking advantage of the interface provided by the disassembler software module, iii) the instruction is
emulated, updated the memory image and architected registers according to the instruction’s opcode
and input/output operands, and iv) the instruction pointer is moved to the next instruction to be
emulated.
When used independently, the functional simulator runs a program to completion. Initially, the
simulated instruction pointer is at the program entry, i.e., the address of the first instruction to be
executed. Then, a simulation loop keeps emulating instructions repeatedly until the program runs its
termination routine. But the functional simulator also provides an interface for next simulation stages.
In this case, an independent software entity can request that it emulate its next available instruction.
After internally updating the guest program’s state, the functional simulator returns all information
related with the emulated instruction, as per the information returned by its internal call to the
disassembler.

Detailed Simulator
The detailed simulator, interchangeably referred to as timing or architectural simulator, is the software
component that models hardware structures and keeps track of their access time. The modeled
hardware includes pipeline stages, pipe registers, instruction queues, functional units, cache memories,
and others.
A processor microarchitecture is organized, in general, as a pipeline where each stage is devoted to a
specific purpose. Symmetrically, the detailed simulator body is structured as a main loop, calling all
pipeline stages in each iteration. One iteration of the loop models one clock cycle on the real
hardware. While hardware structures are wholly modeled in the detailed simulator, the flow of
instructions that utilize them is obtained from invocations to the functional simulator.
To illustrate the interaction between the detailed and functional simulators, let us use a 4-stage
pipeline as an example, as shown in Figure 1.3. Instruction execution is assumed in order, and branch
prediction is used to obtain the address of the next instruction to fetch. When the timing simulator
detects free ports in instruction memory and free space in the fetch/decode pipe register, it decides to
fetch a new instruction at the address dictated by the branch predictor. The timing simulator requests
emulation of a new instruction to the functional simulator, after which the latter returns all
information about the emulated instruction, as propagated by its internal call to the disassembler.
While the instruction travels across pipeline stages, it accesses different models of hardware resources
—functional units, effective address calculators, data caches, etc.— with potentially diverse latencies.

9

The timing simulator also keeps track of instruction dependences: An instruction at the decode stage,
for instance, could consume an operand produced by an instruction at the execute stage not
committed to the register file yet. Structural and data hazards potentially cause pipeline stalls that are
propagated all the way back to the fetch stage.
After the emulator runs an instruction, it internally knows exactly what is going to be the effect of
that instruction in the state of the program. But the timing simulator should pretend that the
instruction output is not known until later stages of the pipeline, which is critical for branch
instructions. Under normal circumstances, the branch predictor provides a value for the next IP
(instruction pointer) matching the internal value recorded in the emulator. But when a branch
misprediction occurs, instruction emulation should begin through a wrong execution path.
An emulator with support for wrong-path execution allows the detailed simulator to force a new value
for the IP. When this occurs, the emulator state is automatically checkpointed. The timing simulator
then continues fetching invalid instructions, until the original mispeculated branch is resolved. At this
point the contents of the pipeline are squashed, and the emulator receives the command to restore the
previous checkpoint. This mechanism is used, for example, in the simulation of the x86 superscalar
pipeline, described in Chapter 2.
The detailed simulator is the ultimate tool for architectural exploration studies. When used in
isolation, it provides detailed hardware state and performance statistics, headed by the universal
performance metric execution time. But the detailed simulator also allows for the generation of an
exhaustive simulation trace, that comes in form of a plain-text file, and can be parsed manually or
automatically in later simulation steps.

Visual Tool
The last software component involved in a microarchitecture model is the graphic visualization tool.
As opposed to the runtime interaction scheme observed previously, the visual tool does not
communicate with the detailed simulator during its execution. Instead, the detailed simulator
generates a compressed text-based trace in an output file, which is consumed by the visual tool in a
second execution of Multi2Sim.
The visual tool provides the user with a cycle-based interactive navigation. For each simulation cycle,
one can observe the state of the processor pipelines, instructions in flight, memory accesses traversing
the cache hierarchy, etc. This level of detail complements the global statistics provided by the timing
simulator: Not only can one observe final performance results, but also the cause for access contention
on a specific hardware resource, as well as other performance bottlenecks. More details about
visualization of simulation traces can be found in Chapter 11.

1.3 Full-System vs. Application-Only Emulation
Two families of ISA emulators can be distinguished, according to the guest software they are devoted
to run. A full-system emulator runs the entire software stack that would normally run on a real
machine, including an operating system (OS), a set of device drivers, and user-level applications. On
the other hand, an application-only emulator —Multi2Sim can be classified as such— concentrates in
the execution of a user-level application, removing OS and device drivers from the software stack. A
comparison between these two emulation approaches is presented next.

10

Figure 1.4: Infrastructure of different simulation approaches. The full-system simulator boots a full-
fledged operating system, on top of which guest programs run. The application-only simulator removes
the intermediate layer and runs only the guest programs.

Full-System Emulation
A full-system emulator, represented in Figure 1.4a, begins execution by running the master-boot record
of a disk image containing an unmodified operating system (guest OS). Its state is represented as the
physical memory image of the modeled machine, together with the values of the architected register
file. The management of guest applications is done by the guest OS, transparently to the full-system
emulator.
The following software components are present in a full-system emulator: a complete implementation
of the ISA specification, including user-level and privileged instructions; a virtualization service for all
I/O devices, intercepting instructions from the guest OS performing I/O operations; and in most
cases, a checkpointing mechanism that allows for a guest OS to start its normal operation, skipping
the costly booting process.
A full-system emulator behaves similarly to a virtual machine in the way it runs a guest OS and
abstracts I/O. However, an emulator intercepts every single ISA instruction to update a dedicated copy
of the emulated OS state, while a virtual machine runs ISA instructions natively, taking advantage of
the support in the host processor for hardware virtualization. Thus, a virtual machine can be much
faster, in fact having an efficiency comparable to the non-virtualized OS execution, but it cannot
capture a trace of ISA instructions to feed other software components devoted to timing simulation.

Application-Only Emulation
The execution scheme of an application-only emulator is represented in Figure 1.4b. As opposed to the
full-system emulator, instruction emulation begins straight at the guest program entry point (i.e.,
initial virtual address), as encoded in the program ELF binary. In an OS, there are two main services
to allow an application to run on top of it: preparation of an initial memory image for the application
(process known as program loading), and communication between the application and OS at runtime
via system calls. Since the OS is removed from the guest software stack in an application-only
simulation, these two services are abstracted by the emulator itself.
The program loading process consists, in turn, of three steps. First, the application ELF binary is
analyzed and those sections containing ISA instructions and initialized static data are extracted. An
initial memory image is created for the guest program, copying these ELF sections into their
corresponding base virtual addresses. Second, the program stack is initialized mainly by copying the
program arguments and environment variables to specific locations of the memory image. And third,
the architected register file is initialized by assigning a value to the stack- and instruction-pointer

11

registers. After program loading, emulation is ready to start with the first ISA instruction at the
program entry point.
A guest program executes software interrupts to request an OS service through a system call,
abstracted by the application-only emulator. When a system call is intercepted, the emulator gathers
information about all its input arguments. Then, it updates its internal state as specified by the
requested service, as well as the guest program’s state, giving it the illusion of having executed the
system call natively. For example, the invocation of system call open involves collecting a file name
from the guest program, updating the emulator’s internal file table, and returning the new file
descriptor to the guest program. While the execution of a software interrupt in a native environment is
equivalent to a jump to OS code, the application-only model wholly runs the system service as a
consequence of one single ISA instruction emulation — the software interrupt.
An application-only emulator requires the following software components: a partial implementation of
an ISA specification, not including privileged ISA instructions designed for exclusive OS use;
implementation of all system calls, as specified in the Linux application binary interface (ABI); and
management of process tables, file tables, signal masks, and other structures representing the internal
state of an OS.

1.4 Frequency Domains
Starting with Multi2Sim 4.2, frequency domains are modeled independently for the memory system,
the interconnection networks, and each CPU and GPU architecture model. In different configuration
INI files, a variable named Frequency specifies the speed for each frequency domain, as described in the
corresponding chapter of this guide. As opposed to the older idea of a global simulation cycle,
Multi2Sim 4.2 introduces the concept of the global simulation time, measured with an accuracy of 1ps
(picosecond).
The strategy used in Multi2Sim to synchronize different frequency domains consists in using a main
simulation loop that virtually runs at the highest frequency present in the system. In other words, each
iteration of the main loop causes an increase in the global simulation time equal to the clock period of
the fastest frequency domain. As an example, let us assume an x86 pipeline working at 1GHz with a
memory system working at 667MHz. In every iteration of the main simulation loop, the x86 pipeline
model advances its state once, while the state update for the memory system is skipped once every
three iterations.
When a given iteration of the main loop does not cause a timing simulation of any frequency domain,
the global time is not updated. To illustrate this case, let us consider the simulation of an x86 OpenCL
host program that transfers control to the Southern Islands GPU model during a short period of time.
Let us assume, as well, that the x86 architecture has been configured for functional simulation (or
emulation), and that the Southern Islands model has been set up for timing (or detailed) simulation.
During the first phase of the x86 program execution, each main loop iteration emulates one single x86
instruction. Since the x86 timing model is inactive, and no other frequency domain is undergoing a
detailed simulation, the global simulation time does not advance. When the GPU kernel is launched,
the Southern Islands timing simulator is activated, and the global time starts increasing. Finally, when
the GPU kernel finishes, Multi2Sim returns to the original scenario, where the global time remains
steady. In this particular example, the final simulation time reported (section [General], variable
SimTime in the statistics summary) is equal to the simulation time of the Southern Islands architecture
(section [SouthernIslands], variable SimTime).

12

1.5 Getting Started

Installation
To install Multi2Sim, download the simulator source package from the home page at
www.multi2sim.org. The package is a compressed tar file, that can be unpacked and compiled using
the following commands, replacing <version> with the appropriate value:

$ tar -xzvf multi2sim-<version>.tar.gz
$ cd multi2sim-<version>
$./configure
$ make

If all library dependences are satisfied and compilation succeeds, the main Multi2Sim command-line
tool is found at multi2sim-<version>/src/m2s. If you have root privileges on the machine, you can
optionally install the package to make it available to all users of the system. This is not recommended
though if you plan to make modifications in the source code and rebuild the simulator often. The
command to install the simulator is
$ sudo make install

Multi2Sim has a rich set of command-line options that allow for simulations of complex processor
designs and guest program configurations. But it also provides a simple command-line interface to
launch initial test simulations. The generic command-line syntax is

$ m2s [<options>] [<program> [<args>]]

The string <options> represents a (possibly empty) set of command-line options that define the type of
simulation to be performed, as well as the processor model to be used. All options start with a double
dash (––), and optionally receive one or more arguments. A list of command-line options can be
obtained by running command

$ m2s --help

After the last command-line option is parsed, m2s can receive further strings. The first string following
the last option is interpreted as the executable guest program to run on Multi2Sim. All remaining
strings are interpreted as arguments for the guest program. Some simple execution examples are
shown next.

First Execution
As an initial example, let us choose a simple x86 program as our guest application running on
Multi2Sim. The samples/x86 directory in the downloaded package contains a set of mini-benchmarks
that can be used as test cases. Each mini-benchmark is provided with its source code, as well as its
statically compiled executable file. Let us start executing benchmark test-args natively, passing three
argument strings to it:

$./test-args how are you
number of arguments: 4

argv[0] = ./test-args
argv[1] = how
argv[2] = are
argv[3] = you

13

As observed, test-args is a simple program that outputs the number of arguments passed in the
command line, followed by a list of the arguments themselves. The test-args mini-benchmark can be
run on top of Multi2Sim by just prepending m2s (or the full-path location of the executable, if not
installed) to the command line:

$ m2s test-args how are you

; Multi2Sim 4.0.1 - A Simulation Framework for CPU-GPU Heterogeneous Computing
; Please use command ’m2s --help’ for a list of command-line options.
; Last compilation: Nov. 30, 2012 16:44:36

number of arguments: 4
argv[0] = test-args
argv[1] = how
argv[2] = are
argv[3] = you

;
; Simulation Statistics Summary
;

[General]
RealTime = 0.03 [s]
SimEnd = ContextsFinished

[x86]
RealTime = 0.03 [s]
Instructions = 91793
InstructionsPerSecond = 3086413
Contexts = 1
Memory = 10375168

The output of the code above is split into the output coming from the simulator, provided in the
standard error output stderr and shown red in the listing. There is also the output coming from the
guest application, provided in the standard output stdout, and shown in black text. Even if the guest
program tries to write into stderr, Multi2Sim redirects the output text into the host standard output
stdout. In Unix, standard and standard error outputs can be dumped into real or virtual files using the
redirection syntax (e.g., “> my-file” or “2> /dev/null”).
A format used throughout Multi2Sim’s modules, both for input configuration files and output
configuration reports, is the INI file format. An INI file is a piece of plain-text composed of section
headers, variable-value pairs, and comments. A section header is a string surrounded with square
brackets (e.g., “[My-section]”). A variable-value pair is formed of two strings separated with an equal
sign, always appearing after a section header (e.g., “Var-name = 123”). And a comment is a line
starting with a semicolon (“;”).
Multi2Sim’s standard error output stderr follows the INI file format. It is used to output a summarized
report of the simulation execution. The report contains a welcome string, dumped before simulation
starts, and a set of statistics classified in sections, shown at the tend of the simulation. There is one
section named [General] presenting global simulation statistics, and one individual section for each
activated processor model — in this case only [x86].

Statistics Summary
Section [General] of the statistics summary, presented in the standard error output at the end of a
simulation, contains the following variables:

14

• RealTime. Total real time of the simulation. This value is purely a simulator performance metric,
and should not be used for guest program performance evaluation purposes.

• SimEnd. Reason why the simulation finished, taking one of the following values:

– ContextsFinished. All guest programs and their spawned threads finished execution.
– MaxTime. The maximum simulation time specified with command-line option ––max-time

<time> has been reached.
– Signal. Multi2Sim received a signal to stop simulation (the user pressed Ctrl+C).
– Stall. Detailed simulation has stalled. Most architectures include sanity checks asserting

that some constant progress must be made in the simulated pipelines. If no instruction is
emulated during a large number of cycles, a stall is assumed and simulation automatically
stops.

There are additional possible values for variable SimEnd specific to each microprocessor
architecture. These values are described in the corresponding chapter of this document.

The following variables appear as part of the [General] section only if at least one architecture ran an
active detailed simulation (for example, if an x86 program is run with the additional command-line
option ––x86-sim detailed).

• SimTime. Total simulated time in nanoseconds. This time can be used as a performance metric
for the guest application running on Multi2Sim and the modeled architectures. It is obtained
based on the pipeline models, frequency domains, guest instructions executed, etc. In every cycle
of the main simulation loop, a time delta is added to the total time as long as there is at least
one frequency domain performing a useful simulation. Loop iterations where only emulation is
performed will not affect the SimTime metric.

• Frequency. Fastest frequency domain specified in configuration files, considering memory
hierarchy, networks, and CPU/GPU architectures. The domain with the shortest cycle time
determines the virtual speed of the main simulation loop (see Section 1.4).

• Cycles. Total number of simulation cycles with an active detailed simulation in any of the
frequency domains. This variable is calculated as the product SimTime×Frequency.

The statistics summary includes one additional section for each microprocessor architecture that was
activated during the simulation ([x86], [ARM], [SouthernIslands], etc). The meaning of some variables
in these sections is shown in the following chapters of this guide presenting the architecture-specific
models. However, some variables are common in all sections, with the following meaning:

• RealTime. Time in seconds during which there was an active simulation for the architecture. This
metric represents real time, and should not be interpreted as a performance metric for the guest
program.

• Instructions. Number of instrutions emulated for the architecture. For timing simulation of an
architecture with support for speculative execution, such as x86, this value can be larger than
the number of instructions effectively executing in the pipelines.

• InstructionsPerSecond. Number of instructions emulated per second, calculated as the quotient
between variables Instructions and RealTime of the same section. This metric is a simulation
performance metric, and should not be interpreted as a guest program performance.

The following variables are present in all architecture-specific sections for each architecture undergoing
a detailed simulation:

15

• SimTime. Simulated time during which there was an active timing simulation for the architecture.
This time can be interpreted as a performance metric for the guest program, dependent on the
modeled pipelines, latencies, executed instructions, etc.

• Frequency. Frequency in MHz of the architecture domain, as specified by the user in the
architecture-specific configuration file.

• Cycles. Number of cycles in which the architecture underwent an effective timing simulation, in
the context of the architecture’s frequency domain. Notice that this number differs from the
number of iterations of the main simulation loop in those cases when the latter is advancing
simulation time at time intervals corresponding to a different frequency domain (see Section 1.4).

• CyclesPerSecond. Number of cycles simulated per second. This value is calculated as the
quotient between Cycles and RealTime of the same section. It is purely a simulation performance
metric, and should not be used for guest program performance evaluation.

Launching Multiple Guest Programs
Using the standard command-line syntax, only one guest program can be launched on Multi2Sim at a
time. In some cases, though, it makes sense to execute several applications in parallel on the
simulator. For example, a model of an x86 multi-core processor can be fully stressed either using one
single multi-threaded application —a program based on pthreads, OpenMP, MPI, etc.—, or using
several single-threaded programs, each running on a different virtual core.
To run more than one initial guest program (or context), a context configuration file should be used,
passed to the simulator with command-line option ––ctx-config <file>. The context configuration file
follows the INI file format, with as many sections as initial contexts are to be launched. The section
for the first context should be named [Context 0], followed by section [Context 1], and so on.
Multi2Sim will stop processing the file once the consecutive order of context sections is broken, or
obviously, if the file ends.
A section in the context configuration file accepts the following variables:

• Exe = <path>. Executable file containing the guest program. The presence of this variable is
mandatory, while all following variables can be omitted.

• Args = <arg_list>. Command-line arguments for the simulated program.
• Env = <env_list>. Additional environment variables for the simulated program. The list of given

environment variables will be accessible to the guest program, together with the set of host
environment variables. Each environment variable should be given as a string in double quotes.

Example: Env = "var1=value1" "var2=value2"

• Cwd = <path>. Current working directory for the simulated program. Whenever the simulated
program uses relative paths, this will be the directory used to build absolute paths. If omitted,
the host current directory will be used by default.

• StdIn = <file>. Standard input for the program. If omitted, the host standard input (standard
input for Multi2Sim) is used by default.

• StdOut = <file>. Standard output and standard error output of the guest application. If omitted,
the host standard output stdout will be used by default for both the guest standard output
stdout and standard error output stderr.

The guest programs launched in the context configuration file will be part of the list of initial contexts
together with the additional program specified in the command line, if any. As an example, the
following listing corresponds to a context configuration file creating two contexts. The first context

16

uses program test-args with three arguments, sending its output to file context-0.out. The second
context launches program test-sort, dumping its output to file context-1.out.

[Context 0]
Exe = test-args
Args = how are you
Stdout = context-0.out

[Context 1]
Exe = test-sort
Stdout = context-1.out

17

Chapter 2

The x86 CPU Model

2.1 The x86 Simulation Paradigm
The simulation of an x86 guest program can be divided into two main modules: the functional
simulation (or emulation) and the timing (detailed or architectural simulation. Given an executable
ELF (Executable and Linkable Format) file, the functional simulator provides the same behavior as if
the program was executed natively on an x86 machine. The detailed simulator provides a model of the
hardware structures of an x86-based machine; it provides timing and usage statistics for each hardware
component, depending on the instruction flow supplied by the functional simulator.

The x86 Functional Simulator
The executable generated when building Multi2Sim is m2s, which is a unified tool for both functional
and detailed simulation. Optional command-line option ––x86-sim functional enables x86 functional
simulation (default configuration). This configuration provides an implementation for the functional
simulation. It takes as an input one or more ELF files, and emulates their execution, providing a basic
set of statistics based on the guest code run. The main actions performed by the functional simulator
can be classified into program loading, x86 instructions emulation, and system calls emulation,
described next:

• Program Loading. The state of a guest program’s execution, referred to as context, is basically
represented by a virtual memory image and a set of logical register values (Figure 2.1a). The
former refers to the values stored in each memory location in the context’s virtual memory, while
the latter refers to the contents of the x86 registers, such as eax, ebx, etc.
The Linux Application Binary Interface (ABI) specifies an initial value for both the virtual
memory image and register values, before control is transferred to the new context. The initial
state of the context is inferred mainly from the program ELF binary, and the command-line run
by the user to launch it, during the process called program loading. In a real system, program
loading is performed by the operating system after an execv system call or any of its variants. In
the simulation environment, Multi2Sim is in charge of performing program loading for each
guest context run on top of it. Program loading consists of the following steps:

– First, the x86 binary is analyzed with an ELF parser. An ELF file contains sections of code
(x86 instructions) and initialized data, jointly with the virtual address where they should be
initially loaded. For each ELF section, the program loader obtains its virtual offset and
copies it into the corresponding location in the virtual memory image.

18

Figure 2.1: Initialization and central loop of the functional simulation of an x86 program.

– The context stack is initialized. The stack is a region of the guest virtual memory image
pointed to by register esp. Initially, it contains a set of program headers copied from the
ELF file, followed by an array of environment variables, and the sequence of command-line
arguments provided by the user.

– The x86 registers are initialized. The esp register is set to point to the top of the stack,
and the eip register is set to point to that memory location containing the code to run
when control is first transfered to the new context.

• Emulation of x86 instructions. Once the initial image of the new context is ready, its
emulation can start. Iteratively, the functional simulator reads a sequence of bytes at the guest
memory address pointed to by guest register eip. Then, the represented x86 instruction is
obtained by calling the Multi2Sim x86 decoder and disassembler. The instruction is emulated by
updating accordingly the guest virtual memory image and registers1. Finally, guest register eip is
updated to point to the next x86 instruction to be executed.

• Emulation of system calls. A special case of machine instruction is the software interrupt x86
instruction int. Specifically, instruction “int 0x80” is used to perform a system call. When
Multi2Sim encounters a system call in the emulated application, it updates the context status
accordingly depending on the system call code and its arguments, providing the guest program
with the view of actually having performed the system call natively.
In most cases, Multi2Sim will need to perform the same host system call as the guest program is
requesting, by making a pre- and post-processing of the arguments and result, respectively. For
example, when a guest program runs an open system call, it provides in specific x86 registers a
pointer to the string containing the path to be opened, and it expects a file descriptor as a
return value, also in a specific x86 register. Roughly, Multi2Sim deals with this by locating the
path string in guest memory, performing its own host open system call, and placing the resulting

1For example, an add instruction would read the source operands from guest memory or registers, perform an addition,
and store its result back into guest memory or registers, depending on the location of the destination operand.

19

file descriptor into guest register eax, where the guest context expects it to be once execution
resumes at the instruction following the system call.

The high-level actions performed by the functional simulator loop are represented in Figure 2.1b,
including the emulation of both x86 instructions and system calls.

The Detailed Simulation
Command-line option ––x86-sim detailed enables x86 detailed simulation. Detailed simulation activates
the model of an x86 CPU pipeline with support for branch prediction and speculative execution. The
first stage of this pipeline (fetch stage) interacts with the functional simulator module or Multi2Sim
kernel library, by using a simple interface. Iteratively, m2s asks the functional simulator to emulate the
next guest x86 instruction and return some information about it. Based on this information, m2s can
figure out which hardware structures are activated and performs a timing simulation.
The functional simulator knows at each time which is exactly the next instruction to execute. In
contrast, real hardware obtains the address of the next instruction to fetch from the output of a
branch predictor. This address can be correct or might be the start of a sequence of mispredicted
instructions, followed by a pipeline squash and recovery. This process is modeled in m2s as follows.
As long as the predicted address for the next instruction matches the functional simulator statement,
both functional and detailed simulation are synchronized. However, a branch misprediction will make
m2s start fetching instructions through the wrong execution path. At this time, m2s forces a new value
for the eip register in the functional simulator, which automatically checkpoints the context state. m2s

keeps fetching instructions and forcing the functional simulator to execute them, until the mispredicted
branch is resolved in an advanced stage of the pipeline. The branch resolution leads m2s to squash the
modeled pipeline contents, and makes the functional simulator return to the last valid checkpointed
state, from which correct execution is normally resumed.

2.2 The x86 Statistics Summary
The x86 statistics summary is presented at the end of a simulation if there was an effective functional
or timing simulation for the x86 architecture. It is dumped in the standard error output, following the
INI file format, in a section named [x86]. Besides the standard variables presented in Section 1.5 for
all architectures, the following x86-specific variables are present:

• Contexts. Maximum number of contexts (software threads) simultaneously running in x86 guest
programs during the simulation.

• Memory. Maximum amount of memory in bytes used in total by all contexts.
The following variables are present in the statistic summary only for detailed x86 simulation:

• FastForwardInstructions. Number of x86 macro-instructions fast-forwarded with functional
simulation, as specified in the x86 configuration file.

• CommittedInstructions. Number of x86 macro-instructions committed in all x86 pipelines,
considering all cores and hardware threads. This value is always equal to or lower than the
number of emulated instructions captured in variable Instructions (see Section 1.5).

• CommittedInstructionsPerCycle. Number of x86 instructions committed per cycle, calculated as
the quotient of CommittedInstructions and Cycles. This value can be used as a guest program
performance metric.

20

• CommittedMicroInstructions. Number of micro-instructions committed in all x86 pipelines,
considering all cores and hardware threads. Since each x86 instruction generates at least one
micro-instruction, this value is always equal or greater than CommittedInstructions.

• CommittedMicroInstructionsPerCycle. Number of micro-instructions committed per cycle,
calculated as the quotient of CommittedMicroInstructions and Cycles. This value can be used as a
guest program performance metric, specific for the x86 instruction decoding strategy
implemented in Multi2Sim.

• BranchPredictionAccuracy. Branch predictor accuracy, calculated as the number of correctly
predicted branches divided by the total number of branches (i.e., branch micro-instructions).

As presented in Section sec:intro:getting-started, variable SimEnd in section [General] of the statistics
summary represents the reason why the simulation ended. Besides the standard values presented
earlier, the x86 architecture introduces the following possible values:

• x86LastInst. The emulation of an x86 program has executed the last instruction, as specified in
command-line option ––x86-last-inst <inst>.

• x86MaxInst. The maximum number of x86 instructions has been reached, as specified in
command-line option ––x86-max-inst <num>. In functional simulation, this limit is given as the
maximum number of emulated instructions. In detailed simulation, the limit is given in number
of committed (non-speculative) x86 instructions.

• x86MaxCycles. The maximum number of x86 simulation cycles has been reached, as specified in
command-line option ––x86-max-cycles <cycles>. This cause for simulation end is only possible
for detailed x86 simulation.

2.3 Compiling and Simulating Your Own Source Code
Day after day, Multi2Sim provides a more and more robust and complete support for the x86
instruction set and Unix system calls. This means that every new release of the simulator makes it
more likely for your own compiled source files to be supported, regardless of your gcc, glibc, or Linux
kernel versions. The main test scenarios for Multi2Sim have been executions of the pre-compiled
benchmark suites provided in the website, but also support has been added for missing features, based
on reports sent by users in the past years. The next sections show some considerations when
simulating your own program sources.

Static and Dynamic Linking
When compiling a program, there are two main approaches to link the object files into the final
executable, called dynamic and static linking. It is important to understand the characteristics of each
approach and their impact on the program execution, either native or simulated.

• Static linking. The gcc linker can be configured to generate a statically linked executable by
adding the -static option into the command line. In this case, the code of any shared library
used by the program (such as the mathematic library, the POSIX thread library, glibc library,
etc.) is linked together with the program. This code includes, for example, the implementation
of the printf function, along with many other program initialization procedures. Even for the
simplest hello world program, a huge executable file is generated. The advantage thereof is that
this file can be used on any Linux machine with a compatible version of the kernel, regardless of
the versions of the remaining installed development packages and libraries.

21

• Dynamic linking. This is the default behavior for gcc. When a program is linked dynamically,
the library code is not attached for the final executable. Instead, every reference to an external
symbol, such as the printf function, is left unresolved initially. The compiler adds into the
executable some code to load the dynamic loader, which is also a dynamic library present in your
system, usually under the /etc directory. When the program is executed, the guest code itself
copies the dynamic loader code into its own context image, and then jumps into it to transfer
control. Then, the dynamic loader tries to find all shared libraries required by your program
(usually *.so files under the /lib or /usr/lib directories), and loads their code into the process
image as well. Finally, control is transferred back to the program code, which continues with
other initialization actions.

Based on the previous description, the following difference can be noted between the static and
dynamic linking approaches, regarding the creation of the process executable code image. In the case
of static linking, this initialization is exclusively performed by the program loader, implemented by the
OS in a real machine, and by a simulator library in the Multi2Sim environment. In contrast,
dynamically linked programs follow two steps in the code initialization: first, the OS (or Multi2Sim)
creates an initial program image; second, once the program starts running, it continues to update its
image by loading the shared libraries.
Thus, it is important to note that the OS (or the simulator) is not involved in the dynamic linking
process. Since the update of the program image relies on the dynamic loader and dynamic libraries
provided by your distribution, it is much more likely for a given pre-compiled, dynamically linked
executable program to generate incompatibility issues. Thus, all benchmark packages available for
download include statically linked programs.

Observing the Differences
This section shows a practical example to observe the implications of static versus dynamic linking in
the program execution, using the Multi2Sim functional simulator. Let us base this example on the
execution of a hello world program, stored in a file called hello.c, and containing the following code:

#include <stdio.h>

int main()
{

printf("hello world\n");
return 0;

}

First, let us generate a statically linked version of the program, and run it on top of Multi2Sim. A
good clue of the program behavior is going to be given by the system calls. Similarly to the output
provided by the strace tool, a trace of the performed system calls, their arguments, and return values
can be obtained with Multi2Sim by using command-line option ––x86-debug-syscall <file>, where
<file> is the file name of the file where the trace is dumped. If stdout is specified, it dumps the trace
into the standard output:

22

$ gcc hello.c -o hello -static
$ m2s --x86-debug-syscall stdout hello

syscall ’newuname’ (code 122, inst 418, pid 1000)
syscall ’brk’ (code 45, inst 738, pid 1000)
syscall ’set_thread_area’ (code 243, inst 850, pid 1000)

[...]
syscall ’open’ (code 5, inst 911, pid 1000)

filename=’/dev/urandom’ flags=0x0, mode=0x0
return=0x3

syscall ’read’ (code 3, inst 932, pid 1000)
guest_fd=3, pbuf=0xfffdffbd, count=0x3
return=0x3

syscall ’close’ (code 6, inst 948, pid 1000)
guest_fd=3
return=0x0

[...]
syscall ’fstat64’ (code 197, inst 7973, pid 1000)

fd=1, pstatbuf=0xfffdfe58
return=0x0

syscall ’mmap2’ (code 192, inst 8028, pid 1000)
addr=0x0, len=4096, prot=0x3, flags=0x22, guest_fd=-1, offset=0x0
prot={PROT_READ|PROT_WRITE}, flags={MAP_PRIVATE|MAP_ANONYMOUS}
return=0xb7fb0000

syscall ’write’ (code 4, inst 8881, pid 1000)
guest_fd=1, pbuf=0xb7fb0000, count=0xc
buf="hello world\n"
return=0xc

syscall ’exit_group’ (code 252, inst 9475, pid 1000)

The system call trace should look similar to the one shown above (it may vary across systems or even
executions). We can observe that the program is retrieving some kernel information (newuname),
updating the heap size and allocating memory (brk, mmap2), getting some random numbers for
initialization purposes (open, read, close), getting information about the standard output (fstat64),
displaying the hello world string (write), and exiting the program (exit_group). Now let us try the
same with the dynamically linked version of the program:

23

$ gcc hello.c -o hello
$ m2s --x86-debug-syscall stdout hello

syscall ’brk’ (code 45, inst 1122, pid 1000)
syscall ’newuname’ (code 122, inst 2499, pid 1000)
syscall ’open’ (code 5, inst 6906, pid 1000)

filename=’/etc/ld.so.cache’ flags=0x0, mode=0x0
return=0x3

syscall ’fstat64’ (code 197, inst 6931, pid 1000)
fd=3, pstatbuf=0xfffdf924
return=0x0

syscall ’mmap2’ (code 192, inst 6967, pid 1000)
addr=0x0, len=61684, prot=0x1, flags=0x2, guest_fd=3, offset=0x0
prot={PROT_READ}, flags={MAP_PRIVATE}
host mapping created for ’/etc/ld.so.cache’
host_ptr=0xb77e9000
host_fd=5

return=0xb7fa0000
syscall ’close’ (code 6, inst 6983, pid 1000)

guest_fd=3
return=0x0

syscall ’open’ (code 5, inst 8171, pid 1000)
filename=’/lib/libc.so.6’ flags=0x0, mode=0x0
return=0x3

syscall ’read’ (code 3, inst 8192, pid 1000)
guest_fd=3, pbuf=0xfffdfa58, count=0x200
return=0x200

[...]

syscall ’mprotect’ (code 125, inst 80556, pid 1000)
start=0xb7f9a000, len=0x2000, prot=0x1
return=0x0

syscall ’write’ (code 4, inst 91187, pid 1000)
guest_fd=1, pbuf=0xb7faf000, count=0xc
buf="hello world\n"
return=0xc

syscall ’exit_group’ (code 252, inst 92139, pid 1000)
return=0x0

The trace above is an excerpt of the system calls obtained with the dynamically linked version of the
program. It can be observed that the program issues a couple of open system calls for files
/etc/ld.so.cache and /lib/libc.so.6, followed by read, mmap, and mprotect calls, aimed at updating the
guest memory image for the context code, and assigning execution permissions to it.
The overhead of dynamic linking can be observed in the value of variable Instructions in section [x86]

of the statistics summary at the end of the simulation in both cases. While the statically linked
program runs around 10K instructions, the dynamically linked version needs about 100K instructions
when adding the overhead for the initialization.

Execution Variability
A frequent question that Multi2Sim users come up with is the cause for unexpected variability among
program executions. This variability might occur even if the program is run in the same machine, by
the same user, etc., and just a few of seconds after the previous run.
A reason for this can be found in the first system call trace shown above, corresponding to the
statically linked program. As observed, one of the multiple initializations performed by the program
libraries, and specifically by glibc, involves getting a sequence of random bytes by reading file
/dev/urandom. Even though we do not really care what glibc needs this random numbers for, we should

24

assume that the following instructions will use these numbers to perform some actions, which will vary
depending on the actual values read. This would be a possible cause for slight execution variability.
Another frequent source of variability can occur when the same program is executed in different paths.
There is an environment variable called “_” (underscore) that represents the current working directory.
When an execv system call (real system) or the program loader (Multi2Sim environment) initializes a
process image, the environment variables are copied into the new process’s stack. It could perfectly
happen that a specific version of glibc analyzes these variables by, for example, performing a strlen

operation on each of them for any purpose. In this case, the number of iterations for each string would
vary depending on the string lengths. Thus, the total number of instructions executed in the program
might depend on the current directory length, among others.
In conclusion, a small variability among different execution instances of the same program should be
considered as a normal behavior, even if all “environment conditions” seem to be exactly the same.
Notice that this is not a behavior exclusively present in a simulated program, but also incurred by a
program’s native execution on the host machine.

Error Messages when Simulating your Program Binaries
A very extensive implementation is provided in Multi2Sim for both the x86 instruction set and some
more than the most common Unix system calls. The implementation of these features is based on the
usage of both instructions and system calls by the supported benchmarks and tested executables. At
the current point, many different versions of gcc have been used to generate executables, including
different versions of shared libraries and Linux kernels. During this process, new instructions and
system calls have been added, providing a pretty stable and complete version for the functional
simulation of a program.
However, it is possible that your specific combination of shared libraries and gcc compiler generate an
executable file that includes a specific instruction or system call that is not supported by Multi2Sim.
When you try to perform a functional simulation of the unsupported program, you would obtain an
error message like this:

fatal: context 1000 at 0x0804f800: instruction not implemented: 0f a1 b0 ...

— or —
fatal: not implemented system call ’tgkill’ (code 270) at 0x0802010

In any of these cases, don’t give up! We are very interested in increasing the support for any program
executable that a user might need to run. So please send an email to development@multi2sim.org, and
the problem will be solved as soon as possible. Since the origin of the simulator, the fact of providing
a complete implementation of the x86-based Linux ABI has been a priority for its development.

2.4 The Processor Pipeline
A detailed simulation of the x86 pipeline can be activated with option ––x86-sim detailed. When
active, option ––x86-config can be used to pass the x86 pipeline configuration file, while option
––x86-report will optionally dump a detailed statistics report. The x86 configuration file follows the INI
file format, where section [General] allows for these variables (among others):

• Frequency. Frequency in MHz of the x86 pipelines. Any latency given in cycles within the x86
configuration file will be assumed within this frequency domain. The default value for this
variable is 1000 (= 1GHz).

25

Figure 2.2: x86 superscalar processor pipeline.

Figure 2.2 shows a block diagram of the processor pipeline modeled in Multi2Sim. Six stages are
modeled in Multi2Sim, named fetch, decode, dispatch, issue, writeback, and commit.
In the fetch stage, instructions are read from the instruction or the trace cache. Depending on their
origin, they are placed either in the fetch queue or the trace queue. The former contains raw
macroinstruction bytes, while the latter stores pre-decoded microinstructions (uops). In the decode
stage, instructions are read from these queues, and decoded if necessary. Then, uops are placed in
program order into the uop queue. The fetch and decode stages form the front-end of the pipeline.
The dispatch stage takes uops from the uop queue, renames their source and destination registers, and
places them into the reorder buffer (ROB) and the instruction queue (IQ) or load-store queue (LSQ).
The issue stage is in charge of searching both the IQ and LSQ for instructions with ready source
operands, which are schedule to the corresponding functional unit or data cache. When and uop
completes, the writeback stage stores its destination operand back into the register file. Finally,
completed uops at the head of the ROB are taken by the commit stage and their changes are
confirmed.

2.5 Branch Prediction
There are two different components involved in branch prediction: the Branch Target Buffer (BTB)
and the branch predictor itself. The BTB is a set-associative cache indexed by a macroinstruction
address. If an address is present, i.e., the corresponding entry contains a tag equals to the address, the
contents of the entry specify the target of the branch. Moreover, it conveys additional information,
such as the type of branch: conditional, unconditional (or jump), call, or return. The variables to
specify the BTB characteristics are BTB.Sets and BTB.Assoc in section [BranchPredictor]. The argument
BTB.Sets is a power of 2 indicating the number of sets of the BTB, while BTB.Assoc refers to the
number of ways or associativity of the BTB, also a power of 2.
On the other hand, the branch predictor provides the direction of a branch located at a given address,
i.e., whether it is taken or not. The branch predictor kinds modeled in Multi2Sim are Perfect, Taken,
NotTaken, Bimodal, TwoLevel, and Combined. In the processor front-end, branch instructions are
identified by accessing the BTB. Afterwards, the branch predictor states if the branch is actually taken
or not. The branch predictor type is specified by means of the variables Kind =

{Perfect|Taken|NotTaken|Bimodal|TwoLevel|Combined}. Each type of predictor is described next.

Perfect branch predictor
The perfect predictor (variable Kind = Perfect) provides a totally accurate prediction with a 100% hit
ratio. Calls to the BTB-related functions always return the correct target address even if the branch

26

Figure 2.3: Two-level adaptive branch predictor.

has not been committed before, and calls to the branch predictor functions always return the right
direction.

Taken branch predictor
The taken predictor (variable Kind = Taken) assumes that branches are always taken. However, those
branches whose target address is not contained in the BTB will not access the branch predictor, and
the flow of fetched instructions will continue as if the branch had not been taken. Finally, the
not-taken predictor assumes that conditional branches are never taken. However, this predictor is
smart enough to consider as taken those branches that are certainly known as such, that is,
unconditional branches, calls, and returns.

Bimodal branch predictor
A bimodal predictor (variable Kind = Bimodal) is a table indexed by the least significant bits of an
instruction address. The entries of the table are 2-bit up-down saturating counters. A counter
represents the current prediction for a given branch. Values of 0 and 1 represent a not-taken
prediction, while values 0 and 2 mean that the branch is taken. The number of entries in the table is a
power of 2 given by the variable Bimod.Size.

Two-level adaptive predictor
A two-level adaptive predictor (variable Kind = TwoLevel) two tables, each corresponding to one
prediction level. There are three variables involved with this predictor, namely TwoLevel.L1Size,
TwoLevel.L2Size, and TwoLevel.HistorySize, which defines specific parameter of the predictor
components.
As shown in Figure 2.3, the first accessed table is the Branch History Table (BHT). This table is
indexed by the least significant bits of the branch instruction address, and contains TwoLevel.L1Size

entries (power of 2). Each entry contains a branch history register of TwoLevel.HistorySize bits that
indicates the behavior of the last TwoLevel.HistorySize occurrences of the branch. Every time a branch
commits, this register is shifted left, and the least significant bit is set or cleared according to whether
the branch was actually taken or not.
The contents of the history register obtained from the BHT is used to index the row of a second
two-dimensional table called Pattern History Table (PHT). Because the history register has
TwoLevel.HistorySize bits, the PHT is forced to have 2^TwoLevel.HistorySize entries. The column of
the PHT is also indexed by the least significant bits of the branch instruction address. The number of

27

Figure 2.4: Multiple branch prediction.

columns in the PHT is given by the TwoLevel.L2Size parameter. Each entry in the PHT contains a
2-bit up-down saturating counter that gives the final prediction for the inquired branch.
By properly tunning the variables described above, one can form the four two-level adaptive
configurations commonly known as GAg, GAp, PAg, and PAp. See [1] for a more detailed description
about these predictors. The table shown on the right of Figure 2.3 lists the restrictions that need to
fulfill the predictor parameters in order to be classified as each of the cited configurations.

Combined predictor
The combined predictor (option Kind = Combined) combines the bimodal and the two-level adaptive
predictors. On an inquiry, both components are looked up, and their corresponding predictions are
temporarily stored. Then, an additional table, called choice predictor, is accessed to decide whether to
obey to the bimodal predictor statement or to the two-level predictor statement. The variable
Choice.Size specifies the number of entries in the choice predictor (power of 2).
Each entry contains a 2-bit saturating counter. If its value is 0 or 1, the statement of the bimodal
predictor is considered. If its value is 2 or 3, the two-level predictor is used to give the final prediction.
The choice predictor counters are updated at the commit stage only in the case that the bimodal and
the two-level predictors gave a contradicting prediction when looked up.

2.6 Multiple Branch Prediction
Multi2Sim supports the prediction of multiple non-consecutive branches in the same cycle by using the
so-called multiple branch prediction algorithms, as proposed in [2]. This advanced prediction scheme is
required by some other microarchitectural improvements, such as the trace cache. If multiple
non-contiguous basic blocks are fetched in the same cycle, it is necessary to predict the behavior of the
branches located at the end of each of these blocks.
The branch at the end of the first basic block is referred to as primary branch, while the branches
located at the end of the second and third basic blocks following the execution path are called
secondary and tertiary branch, respectively. To make multiple prediction, a branch predictor is needed
which uses a branch history register. In Multi2Sim, multiple branch prediction is allowed only when a
two-level adaptive predictor is used.
Figure 2.4 shows a working scheme of multiple branch prediction. First, a branch history register
(BHR) is used to make the primary prediction. In the case of the two-level predictor, this register is
obtained either straightforwardly from the first level when it uses global history, or by indexing the
branch history table (BHT) using the branch address when it uses per-address history. With the
obtained BHR, the PHT is indexed in the second level to obtain a counter that gives the inquired
prediction. This is the output for the primary branch.

28

To predict the second branch, the BHR is left shifted, and two new BHRs are obtained by filling the
least significant position with 0 and 1. These BHRs are now used to index the PHT and obtain the
predictions for the two possible secondary branches. The choice between these predictions is performed
according to the output of the primary branch prediction.
The tertiary branch is again predicted by left shifting the BHR two positions, and obtaining four
predictions from the PHT, corresponding to the four possible paths that can reach four different
tertiary basic blocks and branches. The choice between these predictions is made by means of the
output of the primary and secondary predictions. This mechanism can be generalized to any number
of additional predictions.
There is a chain connection between the outputs of the primary, secondary, tertiary, etc., predictions.
However, notice that the accessed to the PHT are performed simultaneously. Moreover, those
predictions requiring multiple PHT accessed (e.g., four of a tertiary prediction) always read
consecutive positions in the PHT, since only least significant bits in the BHR differ.

2.7 CISC Instructions Decoding
The x86 architecture defines a CISC instruction set [3]. Each single instruction defined in the x86 ISA
has a size between 1 and 15 bytes, and can perform a wide set of different actions. Some of these
instructions involve several complex actions, such as a memory read followed by an arithmetic
computation and a memory write. Such complex instructions are internally decoded as separate
micro-instructions (uops). The set of possible uops may vary among x86 implementations, and
Multi2Sim defines its own uop set, listed in Appendix IV.
Each uop has a maximum of four output dependences, formed of logical registers and status flags.
There can be at the most one logical register in this set. The maximum number of input dependences
for an uop is three, considering logical registers and status flags, among which a maximum of two
elements can be logical registers.
Next, some examples are shown to illustrate the modeled x86 instruction decoding mechanism. In
each case, an x86 instruction is given, followed by the microcode (uop) sequence that it generates.

• mov edx, DWORD PTR [ebx-0x4]

This instruction reads the 32-bit value at the address pointed by register ebx minus 4, and stores
it in register edx. The generated microcode has to i) calculate the effective memory address
based on the ebx register, ii) load the value at this address, and iii) store the result in edx.
Steps ii and iii can actually be done with a single uop, by just placing the result loaded from
memory directly into the corresponding register. This is the generated sequence of uops:

effaddr ea/ebx
load edx/ea [0x8004300,4]

The arguments for uops are logical registers (dependences). They are presented as
odep1,odep2,.../idep1,idep2,..., where idepXX is an input dependence, and odepYY is an output
dependence. Register ea is an internal logical register used to store results of effective address
computations. Memory uops (load and store) are followed by a tuple [addr,size], indicating the
accessed memory location and the access size.

• add DWORD PTR [ebx+0x8], eax

This is an example of a complex instruction requiring to load a value from memory location
pointed to by ebx plus 8, add this value with the contents of register eax, and store the result
back into memory. In the microcode sequence below, notice how the effective memory address is

29

reused for the memory read and subsequent write. The data register is in this case another
temporary register used to store data for memory uops.

effaddr ea/ebx
load data/ea [0x8004300,4]
add data/data,eax
store -/data,ea [0x800430,4]

• rep movsb

Finally, let us consider a complex x86 string operation. The movsb instruction copies one byte
from the memory location pointed to by register esi into the memory location pointed to by edi.
The additional prefix rep causes these actions to be repeated as many times as the value in
register ecx specifies, while in each iteration the value of esi and edi is incremented (or
decremented, depending on the value of flag DF) by 1. One iteration of the loop generates the
following microcode:

load aux/edi [0x80d789f,1]
store -/esi,aux [0x80d789c,1]
add edi/edi,df
add esi/esi,df
sub ecx/ecx
ibranch -/ecx

The load instruction places in temporary register aux the value read from address edi, which is
stored next at address esi. Then, registers esi and edi are incremented using two add uops, the
value in ecx is decremented, and a branch occurs to the first instruction of the microcode
depending on the value of ecx.
When a generic string operation is decoded, the number of iterations might not be known in
advance. Thus, the decode stage will keep decoding iterations, assuming that uop ibranch

always jumps to the beginning of the loop. This will cause a continuous flow of uops into the
pipeline, and a final burst of mispredicted uops after the last iteration is decoded. When the last
ibranch instruction (first non-taken branch) is resolved, all subsequent uops are squashed, and
execution resumes at the x86 instruction following the string operation.
Figure 2.5 shows an example of a timing diagram generated from the execution of a rep movsb

instruction. Time diagrams can be generated automatically using the M2S-Visual tool (see
Chapter 11).

2.8 Trace Cache
Multi2Sim models a trace cache with a design similar to that originally proposed in [4]. The aim of the
trace cache is to provide a sequence of pre-decoded x86 microinstructions with intermingled branches.
This increases the fetch width by enabling instructions from different basic blocks to be fetched in the
same cycle. Section [TraceCache] in the x86 configuration file (option ––x86-config) is used to set up
the trace cache model, with the following allowed variables:

• Present (defaults to False). If set to True, the trace cache model is activated.
• Sets (defaults to 64). Number of sets in the trace cache. The default value is 64.
• Assoc (defaults to 4). Trace cache associativity, or number of ways in each trace cache set. The
product Sets×Assoc determines the total number of traces that can be stored in the trace cache.

30

Figure 2.5: Timing diagram for the execution of the rep movsb x86 string operation.

31

• TraceSize (defaults to 16). Maximum size of a trace in number of micro-instructions. A trace
always groups micro-instructions at macro-instruction boundaries, which causes them to often
become shorter than TraceSize.

• BranchMax (defaults to 3). Maximum number of branches allowed in a trace.
• QueueSize (defaults to 32). Size of the trace queue size in micro-instructions. See Section 2.9 for
more details on the trace queue management.

Besides micro-instructions, each trace cache line contains the following attached fields:
• valid bit: bit indicating whether the line contains a valid trace.
• tag : address of the first microinstruction in the line. This is always the first one from the set of

microinstructions belonging to the same macroinstruction. If a macroinstruction is decoded into
more than trace_size microinstructions, they cannot be stored in the trace cache.

• uop_count: number of microinstructions in the trace.
• branch_count: number of branches in the trace, not including the last microinstruction if it is a
branch.

• branch_flags: bit mask with predictions for branches.
• branch_mask: bit mask indicating which bits in branch_flags are valid.
• fall_trough: address of the next trace to fetch.
• target: address of the next trace in case the last microinstruction is a branch and it is predicted
taken.

Creation of traces
Traces are created non-speculatively at the so-called fill unit, after the commit stage. In this unit, a
temporary trace is created and dumped into the trace cache when the number of stored
microinstructions exceeds trace_size or the number of branches reaches branch_max. The following
algorithm is used every time an instruction I commits.
If the trace is empty, the address of I is stored as the trace tag. If I is a branch, the fall_through and
target fields are stored as the address of the contiguous next instruction, and the branch target if it is
taken, respectively. This information is needed only in case this branch is the last microinstruction
stored in the trace line. Then, the predicted direction is added to branch_flags in the position
corresponding to bit branch_count. The mask branch_mask indicates which bits in branch_flags are
valid. Thus, the bit position branch_count in branch_mask is set in this case. Finally, the counters
uop_count and branch_count are incremented.
If I is not a branch, the fall_through field is updated, and the target field is cleared. Likewise, the
counter uop_count is incremented.
Before adding I the temporary trace, it is checked whether I actually fits. If the maximum number of
branches of microinstructions is exceeded, the temporary trace is first dumped into a new allocated
trace cache line. When this occurs, the target field is checked. If it contains a value other than 0, it
means that the last instruction in the trace is a branch. The prediction of this branch must not be
included in the branch flags, since the next basic block is not present in the trace. In contrast, it will
be used to fetch either the contiguous or the target basic block. Thus, the last stored bit in both
branch_flags and branch_mask is cleared, and branch_count is decremented.

32

Trace cache lookups
The trace cache is complementary to the instruction cache, i.e., it does not replace the traditional
instruction fetch mechanism. To the contrary, the trace cache simply has priority over the instruction
cache in case of a hit, since it is able to supply a higher number of instructions along multiple basic
blocks.
The trace cache modeled in Multi2Sim is indexed by the eip register (i.e., the instruction pointer). If
the trace cache associativity is greater than 1, different ways can hold traces for the same address and
different branch prediction chains. The condition to extract a microinstruction sequence into the
pipeline, i.e. to consider a trace cache hit, is evaluated as follows.
First, the two-level adaptive branch predictor is used to obtain a multiple prediction of the following
branch_max branches, using the algorithm described in Section 2.6. This provides a bit mask of
branch_max bits, called pred, where the least significant bit corresponds to the primary branch
direction. To check if a trace is valid to be fetched, pred is combined with the trace branch_mask
field. If the result is equal to the trace branch_flags field, a hit is detected.
On a trace cache hit, the next address to be fetched is updated as follows. If the trace target field is
0, the fall_through field is used as next address. If target is non-0, the last predecoded
microinstruction in the trace is a branch. In this case, the bit branch_count+1 in the pred bit mask is
used to choose between fall_through and target for the next fetch address.

Trace cache statistics
When the trace cache is activated, a set of statistics are attached to the pipeline report (option
––x86-report). Since each hardware thread has its private trace cache, there is a different set of
statistics prefixed with the TraceCache identifier in each thread section ([c0t0], [c0t1], etc). The
following list gives the meaning of each reported statistic related with the trace cache:

• TraceCache.Accesses. Number of cycles when the trace cache is looked up for a valid trace in the
fetch stage. This is not necessarily the same as the number of execution cycles, since trace
cache accesses are avoided, for example, when the trace queue is full.

• TraceCache.Hits. Number of accesses to the trace cache that provided a hit for the given fetch
address and branch sequence prediction. Notice that this does not imply that the fetched
micro-instructions are in the correct path, since the branch prediction used to access the trace
cache might have been incorrect.

• TraceCache.Fetched. Number of micro-instructions fetched from traces stored in the trace cache.
• TraceCache.Dispatched. Number of micro-instructions fetched from the trace cache and

dispatched to the reorder buffer.
• TraceCache.Issued. Number of micro-instructions fetched from the trace cache and issued to the
functional units for execution.

• TraceCache.Committed. Number of micro-instructions in the correct path that came from a trace
cache access and have committed. These are a subset of the micro-instructions included in the
Commit.Total statistic for the same hardware thread section.

• TraceCache.Squashed. Number of micro-instructions fetched from the trace cache that where
dispatched and later squashed upon a branch misprediction detection. This number is equal to
TraceCache.Dispatched – TraceCache.Commited.

• TraceCache.TraceLength. Average length of the traces stored in the trace cache. This is a value
equal or (probably) lower than the trace cache line size. Since micro-instructions from the same

33

Figure 2.6: The fetch stage.

macro-instruction cannot be split among traces, a trace may be dumped into the trace cache
before being full. The fact that there is a maximum number of allowed branches in a trace is an
additional reason for having traces shorter than the maximum trace length.

2.9 The Fetch Stage
The fetch stage is the first pipeline stage modeled in Multi2Sim. It is in charge of fetching instructions
either from the instruction cache or from the trace cache at the addresses provided by the branch
predictor. The fetched instructions are used to fill the fetch queue and the trace queue, depending on
the structure they were fetched from. Figure 2.6 shows a block diagram of the fetch stage.
The fetch stage is divided into three main parts, as shown in its block diagram, called branch
prediction, instruction cache fetching, and trace cache fetching. The branch prediction part provides
information about the branches located within the fetched block, and this information is sent to the
instruction cache and trace cache fetching parts. The two latter work in parallel, and priority is given
to the trace cache part in case it is able to fetch the requested block. The modeled fetching
mechanism works as follows:

• i) First of all, the BTB is accessed with the current instruction pointer, i.e., the eip register.
Though the number of associative ways of the BTB can be specified in a command-line option,
it is assumed to have as many interleaved ways as the size of the instruction block size in bytes.
In Figure 2.6, this value is set to 16. This means that 16 concurrent accesses can be performed
in parallel to the BTB, as long as no pair of accesses matches the same interleaved way, which is
true as only contiguous addresses belonging to the same block are looked up.

• ii) The concurrent accesses to the BTB provide a mask of those instructions known to be
branches, jointly with their corresponding target addresses. The branch predictor is next looked
up to obtain the predicted direction for the branches, i.e., whether they are taken or not. Since
the BTB also provides the type of branch, the branch predictor will consider this information for
its output. This means that an unconditional branch will always provide a predict-taken output,
and function calls and returns will access the Return Address Stack (RAS) to obtain the actual
target addresses. After the access to the branch predictor, the input mask is converted to an
output mask that only tracks those taken branches.

• iii) In parallel with i), the instruction cache is accessed in the instruction cache fetching part

34

Figure 2.7: The decode stage.

(right block in Figure 2.6). After a variable latency, depending on whether there was a cache hit
or miss, the cache block is available, and the mask provided by the branch prediction part is used
to select the useful bytes. Specifically, a selection logic takes those bytes ranging from the
address contained in register eip until the address of the first predict-taken branch, or until the
end of the block if there was none.
The filtered bytes are then placed into the fetch queue, which communicates the fetch stage
with the next pipeline stage. After fetching, the eip register is set either to the starting address
of the next block if no predict-taken branch was found, or to the target address of the first taken
branch, as provided by the BTB. Notice that data fetched directly from the instruction cache is
formed of x86 complex instructions (or macroinstructions) of variable size, which are not
straightforwardly interpretable by the processor. Instead, they must be first split into fixed-size
microinstructions (or uops) in the decode stage.

• iv) An alternative to iii) and more efficient fetch mechanism is provided by the trace cache
fetching part. It works in parallel with the instruction cache access, and can start as soon as the
BTB access completes and the mask of branches is available. With this mask, the address of the
first branch after eip, be it taken or not, is grabbed to feed a multiple two-level branch predictor
(see Section 2.6). This component gives a prediction for the next group of branches regardless
of whether they are placed in the same or separate blocks.
The multiple output prediction, jointly with the eip register, is used to index the trace cache.
On a hit, the trace cache provides a sequence of predecoded microinstructions, which may span
across multiple blocks and have various intermingled branches. This trace is placed into the
trace cache queue, which also communicates with the next pipeline stage. However, notice that
this queue stores decoded microinstructions, and thus, they require a different and more
lightweight handling in the decode stage.

2.10 The Decode Stage
In the decode stage (Figure 2.7), instructions are taken either from the fetch queue or from the trace
queue. Instructions coming from the fetch queue are decoded and placed into the uop queue.
Instructions coming from the trace queue were fetched from the trace cache. These are predecoded
instructions stored as uops, and can be copied straightforwardly into the uop queue.
A single decode cycle can perform the following actions: i) decode as many instructions from the fetch
queue as the decode bandwidth allows (specified by the variable DecodeWidth in section [Pipeline] in
the x86 CPU configuration file, option ––x86-config) and place them into the uop queue, and ii) copy
any number of subsequent predecoded uops from the trace queue into the uop queue.

35

Figure 2.8: Register renaming.

2.11 Integer Register Renaming

Logical Registers
The register renaming mechanism implemented in Multi2Sim uses a simplification of the x86 logical
registers. There are 32 possible logical dependences between microinstructions, which are listed in
Figure 2.8a. Logical registers eax...edz are general purpose registers used for computations and
intermediate results. Registers esp...edi are specific purpose registers implicitly or explicitly modified
by some microinstructions, such as the stack pointer or base pointer for array accesses. Registers
es...gs are segment registers, while aux1...data are internally used by the macroinstruction decoder to
communicate corresponding microinstructions with one another.
The x86 architecture uses a set of flags that are written by some arithmetic instructions, and later
consumed mainly by conditional branches to decide whether to jump or not. Flags of, cf, and df are
the overflow, carry, and direction flags, respectively, and are tracked as separate dependences among
instruction. On the other hand, flags zf, pf, and sf are the zero, parity, and sign flags, respectively,
and any x86 instruction modifying any of these three flags is modifying all of them. Thus, they are
tracked as a single dependence, called zps.

Physical Register File
The value associated with each logical register, i.e., each potential input dependence for an instruction,
is stored in the physical register file. As represented in Figure 2.8b, the register file consists of a set of
physical registers that store operation results. Each physical register is formed of a 32-bit data, jointly
with a 6-bit field storing the x86 flags. The number of integer physical registers can be established
with the RfIntSize variable in section [Queues] in the x86 configuration file (option ––x86-config).

Renaming Process
At any moment of a guest program simulation, each logical register is mapped to a given physical
register in the register file, containing the associated value. In the Multi2Sim renaming model, logical
register and flags renaming works independently. This means, for example, that register eax and flag
cf can be mapped to the same register file entry. In this case, the value field stores the contents of
eax, while a specific bit in the flags field contains the value for cf. Each logical register is mapped to a
different physical register, but x86 flags can be mapped all to the same physical register, even if the
latter already has an associated logical register.

36

A Register Aliasing Table (RAT) holds the current mappings for each logical register. Its initial state is
shown in Figure 2.8a. Additionally, a Free Register Queue (FRQ) contains the identifiers corresponding
to free (not allocated) physical registers. When a new instruction writing into logical register l is
renamed, a new physical register is taken from the FRQ and the new mapping for l is stored in the
RAT. The previous mapping p′ of logical register l will be needed later, and is stored in the ROB entry
associated with the renamed instruction. When subsequent instructions consuming l are renamed, the
RAT will make them read its contents in p, when they will find the associated value.
When the instruction writing on l is committed, it releases the previous mapping of l, i.e., physical
register p′, returning it to the FRQ if necessary. Notice that, unlike a classical renaming
implementation ignoring flags, a physical register can have several entries in the RAT pointing to it
(the maximum is the number of flags plus one logical register). Thus, a counter is associated with
each physical register, which will only be freed and sent back to the FRQ in case this counter is 0.

2.12 Floating-Point Register Renaming

The x86 Floating-Point Stack
The x86 floating-point (FP) unit is based on a stack of 8 extended precision 80-bit FP registers. Each
of these registers is structured as a 64-bit fraction, 15-bit exponent, and 1-bit sign, representing a
single FP number. The operations performed by the x86 FP instruction set can be classified in three
groups: i) instructions pushing/popping values to/from the stack, ii) exchanging the values at
different stack positions, and iii) performing arithmetic operations involving the value at the top of
the stack.
For example, a piece of code performing an FP addition would push into the stack the two operands
fetched from memory (instructions of type i), add the two registers at the top of the stack by
replacing the top-most register with the result of the operation (type iii), and finally pop the result
from the stack and store it to memory (type i again). When several simple operations are involved in a
complex computation, stack-based arithmetic requires to frequently exchange register positions (type
ii instructions) within the stack, since the requested source operands might not be located at the top.
Push and pop operations on the stack modify the FP stack pointer, while any operation consuming an
FP register first reads the stack pointer to actually locate its source operand. This causes an implicit
dependence between any FP operation and the previous stack push/pop. Moreover, some arithmetic
instructions also modify the stack pointer, which would cause another implicit dependence for all
subsequent FP instructions, even though the FP result generated by the old instruction is not
consumed by the young one.
A naive implementation of the FP arithmetic would conservatively enforce a sequential execution of all
arithmetic operations. This would under-utilize the out-of-order execution potential of a superscalar
processor, and prevent FP independent operations from overlapping each other to hide latencies. Since
Version 2.4, Multi2Sim solves this problem by implementing some of the techniques published in [5],
which rely on a 2-stage register renaming of FP instructions.

Two-Stage Renaming Process
The FP register renaming scheme implemented in Multi2Sim works as follows. In a first stage, source
and destination registers are translated to a flat space independent of the stack pointer. In a second
stage, an additional renaming is performed to remove WAW and WAR hazards while still enforcing
RAW dependences, exactly the same way as it is done for integer registers. More specifically:

37

• 1st Stage. When FP macroinstructions are decoded, the hardware determines by how many
positions (up or down) the top of the stack (ToS) should be modified. This information is
passed to the renaming hardware, jointly with the sequence of corresponding FP
microinstructions. FP instructions (as well as the generated microinstructions) use relative stack
registers, referred to as ST(0) to ST(7), and being ST(0) the FP register located at the head of
the stack. Once in the renaming stage, the ToS pointers is first updated in case it is affected by
the next FP microinstruction. Then, the relative stack register identifiers included in the handled
microinstruction (both for the source and destination operands), are translated into absolute
stack registers by adding the ToS value to their identifier.

• 2nd Stage. Traditional register renaming is then performed for each absolute stack register, by
translating it into a final floating-point physical register. To this aim, a Floating-Pointer Register
Alias Table (FP-RAT) is used to store register associations. This table has as many entries as
possible absolute stack registers, while each entry contains a value between 0 and the number of
FP physical registers minus 1. For each FP operation, the renaming hardware allocates a new
FP physical register, and associates it to the destination absolute stack register of the operation,
if any. This mapping is then stored in the FP-RAT. If there was no free physical register
available for allocation, the renaming stage stalls until any occupied physical register is released.
Each source absolute stack register is also translated into an FP physical register by looking up
the corresponding FP-RAT entries and finding out their current associations.

Since version 2.4, Multi2Sim distinguishes between the integer and the floating-point register files.
The number of floating-point registers can be specified with variable RfFpSize in section [Queues].

2.13 The Dispatch Stage
In the dispatch stage, a sequence of uops is taken from the uop queue. For each dispatched uop,
register renaming is carried out, by looking up the RAT for the current source and previous destination
mappings, and allocating a new physical register for the current destination operand. Then, the uop is
inserted in the ROB, and either in the LSQ or the IQ, depending on whether the uop is a memory
instruction or an arithmetic operation, respectively.
The number of instructions dispatched per cycle is specified with the DispatchWidth variable in section
[Pipeline]. Instruction dispatching can stall for several reasons, such as the unavailability of physical
registers, a lack of space in the ROB/IQ/LSQ, or an empty uop queue. Since the dispatch stage acts
as a bridge between the processor front- and back-end, a stall in this stage is a symptom of some
processor bottleneck constraining performance.

2.14 The Issue Stage
The issue stage operates on the IQ and the LSQ. The uops placed in these queues are instructions
waiting for their source operands to be ready, or for their associated processor resource to be available.
The issue stage implemented the so-called wakeup logic, which is in charge of selecting at the most
IssueWidth uops from each queue that can be scheduled for execution. After selecting the proper
candidates, instructions from the IQ are sent to the corresponding functional unit, whereas load
instructions placed in the LSQ are sent to the data cache.
Since store instructions irreversibly modify the machine state, they are handled in an exceptional
manner both in the issue and the commit stage. On one hand, stores are allowed to access the data
cache only after they are known to be non-speculative, which can be ensured after they have safely

38

reached the ROB head. On the other hand, stores have no destination operand, so they need not
perform any renaming action at the commit stage. Thus, they are allowed to leave the ROB as soon
as they have been issued to the cache, without waiting for the cache access to complete.

2.15 The Writeback Stage
The writeback stage is in charge of taking the results produced by the functional units or by a read
access to the data cache, and store them to the corresponding physical register mapped to the logical
destination of the executed instruction. If the executed instruction is a mispeculated branch, this is
when mispeculation is detected, since both the branch condition and the target address are known at
this time.
Processor recovery on mispeculation can be performed either at the writeback or at the commit stage,
as specified in variable RecoverKind in section [General]. If recovery is performed at the writeback
stage, instructions following the mispeculated branch are drained from the ROB, IQ, and LSQ, the
RAT is returned to a previous valid state, and instruction fetching is delayed as many cycles as
specified by variable RecoverPenalty in section [General].

2.16 The Commit Stage
The commit stage is the last stage of a superscalar processor pipeline, in which instructions commit
their results into the architected machine state in program order. The oldest instruction in the pipeline
is located at the head of the ROB. The condition for a store instruction to be extracted from the ROB
is that it be issued to the cache, while the rest of instructions must be completed before committing.
If the instruction at the head of the ROB is a mispeculated branch and the recovery process is
specified to be carried out at the commit stage, the contents of the ROB, IQ, and LSQ are completely
drained (only mispeculated instructions following the branch remain in the pipeline at this time), the
RAT is recovered to a valid state, and RecoverPenalty cycles go by before instruction fetch resumes.
When a completed, non-speculative uop commits, the following actions are carried out. First, the
register renaming mechanism frees the physical registers corresponding to the previous mappings of
the uop’s destination logical registers (see Section 2.11). Then, the branch prediction mechanism
updates the appropriate tables with the behavior of the committed uop if it is a branch (see Section
2.5). And finally, the uop is added to a temporary buffer in the trace cache, which is used to construct
traces of committed instructions (see Section 2.8).

2.17 Support for Parallel Architectures
To describe how a parallel architecture is modeled in Multi2Sim, the following definitions are first
given.

• A context is a software task (sometimes referred to as software thread) whose state is defined by
a virtual memory image and a logical register file. Logical register values are exclusive for a
context, while a memory map can be either exclusive or shared with other contexts. A running
application is represented with one single context when it executes sequential code. However,
programs can run parallel code by spawning contexts at runtime (using the OpenMP, or POSIX
threads libraries, for example).

• A (hardware) thread is a hardware entity capable of storing the status of a single context and
executing it. In order to store the logical register values, a thread has its own register aliasing

39

Figure 2.9: Parallel architecture scheme.

table (RAT), which maps the logical registers into a physical register file. To store the state of a
private memory image, a thread has its own memory map cached in a translation look-aside
buffer (TLB), which maps virtual memory locations into physical memory pages. Functional
units (adders, multipliers, FP execution unit...) are shared among threads, while other pipeline
structures, stages, and queues (such as ROB, IQ, LSQ) can be private or shared.

• A (processor) core is formed of one or more threads. It does not share any pipeline structure,
execution resource, or queue with other cores, and the only communication and contention point
among cores is the memory hierarchy.

• A processing node is the minimum hardware entity required to store and run one context. In a
multithreaded processor, each thread is one processing node. Likewise, each core in a multicore
(and not multithreaded) processor is considered one processing node. Finally, an c-core,
t-threaded processor (meaning that each core has t threads) has c× t processing nodes, since it
can store and run c× t contexts simultaneously. Each processing node can have its own entry
point to the memory hierarchy to fetch instructions or read/write data. The number of
processing nodes limits the maximum number of contexts that can be executed at a time in
Multi2Sim. If this limit is exceeded, dynamic context scheduling is required to perform a
dynamic mapping of contexts to hardware threads (see Section 2.20).

Based on this definitions, Figure 2.9 represents the structure of the parallel architecture modeled in
Multi2Sim. Specifically, the figure plots a processor with 2 cores and 2 threads, forming 4 processing
nodes with independent entry points to the memory hierarchy.

2.18 Multithreading
A multithreaded processor is modeled in Multi2Sim using variable Threads in section [General] in the
x86 CPU configuration file (option ––x86-config), and assigning a value greater than 1. In a
multithreaded design, most execution resources can be either private or shared among threads. These
resources can be classified as storage resources and bandwidth resources. The former refer to pipeline
structures (such as the ROB, IQ, LSQ, or register file), while the latter refer to the uops that a
pipeline stage can handle in a single cycle (such as dispatch slots, issue slots, etc.).

40

Variable Coarse-Grain MT Fine-Grain MT Simultaneous MT
FetchKind SwitchOnEvent TimeSlice TimeSlice/Shared

DispatchKind TimeSlice TimeSlice TimeSlice/Shared
IssueKind TimeSlice TimeSlice Shared
CommitKind TimeSlice TimeSlice TimeSlice/Shared

Table 2.1: Classification of multithreading paradigms depending on Multi2Sim variables in the x86 CPU
configuration file.

Configuration of storage resources
Multi2Sim uses variables RobKind, IqKind, LsqKind, and RfKind in section [Queues] in the x86 CPU
configuration file to specify the sharing strategy of the ROB, IQ, LSQ, and register file, respectively.
The possible values for these options are Private and Shared. The parameter specifying the size of each
structure always refers to the number of entries per thread. For example, when the ROB is shared in an
n-threaded, the total number of ROB entries that can be occupied by a single thread is n×rob_size.
The fact of sharing a storage resource among threads has several implications in performance and
hardware cost. On one hand, private storage resources constrain the number of structure entries
devoted to each thread, but it is a natural manner of guarantying a fair distribution of available
entries. On the other hand, a shared resource allows an active thread to occupy resource entries not
used by other threads, but a greedy thread stalled in a long-latency operation may penalize other
active threads by hundreds of cycles if it is holding resource entries for too long.

Configuration of bandwidth resources
The variables to specify how pipeline stages divide their slots among threads are FetchKind,
DispatchKind, IssueKind, and CommitKind in section [Pipeline]. The values that these options can take
are TimeSlice and Shared. The former means that a stage is devoted to a single thread in each cycle,
alternating them in a round-robin fashion, while the latter means that multiple threads can be handled
in a single cycle. The stage bandwidth always refers to the total number of slots devoted to threads.
For example, a value of 4 for IssueWidth means that at the most 4 uops will be issued per cycle,
regardless of whether the issue stage is shared or not.
The fetch stage can be additionally configured with long term thread switches, by assigning the value
SwitchOnEvent for the FetchKind variable. In this case, instructions are fetched from one single thread
either until a quantum expires or until the current thread issues a long-latency operation, such as a
load instruction incurring a cache miss.
Depending on the combination of sharing strategies for pipeline stages, a multithreaded design can be
classified as coarse-grain (CGMT), fine-grain (CGMT), and simultaneous multithreading (SMT). The
combination of parameters for each stage and its classification are listed in Table 2.1. The main
enhancement of FGMT with respect to CGMT is a round-robin fetch stage, which constantly feeds the
rest of the pipeline with uops from different threads, thus increasing thread-level parallelism. The key
improvement of SMT with respect to FGMT is the shared issue stage, which feeds functional units
with a higher rate of ready instructions, regardless of the thread they belong to.

2.19 Multicore Architectures
In Multi2Sim, a multicore architecture is modeled by assigning a value greater than 1 to variable Cores

in section [General] in the x86 CPU configuration file. Since processor cores do not share any pipeline

41

structure, there is no other option related with the multicore processor configuration. When the
number of cores is greater than 1, all processor pipelines and their associated structures are simply
replicated, and they work simultaneously in every execution cycle. As mentioned above, the only
common entity for cores is the memory hierarchy.

2.20 The Context Scheduler
Multi2Sim introduces the concept of context scheduling after version 2.3.3, similar to the idea of
process scheduling in an operating system. The scheduler is aimed at mapping software contexts to
processing nodes (hardware threads) to run them. There are two types of context scheduling, selected
by the ContextSwitch variable. A value of false (f) for this option corresponds to the static scheduler,
while a value true (t) actives the dynamic scheduler. Both of them are implemented in the sched.c

file, and their behavior is explained in the following sections.

The Static Scheduler
The static scheduler is implemented in function p_static_schedule(). This type of scheduling maps
contexts to hardware threads in a definitive manner, using the following criterion:

• At startup, the context configuration file specified in the ––ctx-config option is analyzed and
each software context is mapped to a different hardware thread. The followed allocation order
maps first threads within a single core and then goes to the next core after the first one fills up.

• An application using parallel code might spawn new contexts at runtime. New spawned contexts
are allocated in the same order as initial contexts (first threads, then cores). This allocation is
definitive, meaning that the allocated processing node will not be assigned to any other context
and vice versa, even if the context is suspended or finishes. Thus, a suspended context cannot
be evicted to allow the hardware thread to be occupied by other context.

• Context switches are not allowed. A running context holds the allocated hardware thread until
the simulation ends.

• The total number of created contexts (initial plus spawned contexts) is limited by the total
number of processing nodes, that is, the number of cores multiplied by the number of threads.
For example, a 2-core, 2-threaded system with one initial context is not allowed to spawn more
than 3 additional contexts during execution, even after any of them finishes.

The Dynamic Scheduler
The dynamic scheduler, implemented in function p_dynamic_schedule(), offers a more flexible handling
for software contexts, with the following criterion:

• The mapping of initial contexts at startup does not differ from the static scheduler. However,
these allocations are not definitive, and they can vary at runtime.

• When a context is selected for eviction from a processing node, the scheduler labels it with a
deallocation flag. Hereafter, it fetches no more instructions until the associated thread’s pipeline
is empty (including fetch queue, uop queue, and reorder buffer). Then, the context is effectively
evicted, and the processing node becomes available for allocation by some other waiting context.

• Contexts have a time quantum, specified as a number of cycles by the ContextQuantum variable. If
an allocated context exceeds this quantum, and there is any unallocated context waiting for
execution, it is selected for eviction by the dynamic scheduler.

42

• Contexts have an affinity to hardware threads. This means that a context stores the processing
node identifier of its last allocation, and likewise, a hardware thread stores the pid of the last
allocated context. When a context is suspended (or evicted after its quantum expires), it tries to
return to the same processing node where it was run for the last time, if it is available.

• New spawned contexts try to find a processing node that has not been used before by any other
context, rather than choosing a processing node that was already allocated by any suspended or
evicted context.

• When an allocated context is suspended, it is immediately selected by the dynamic scheduler for
eviction, so that any unallocated context waiting for execution can allocate the released
processing node again.

The aim of the simple affinity scheme implemented by the Multi2Sim dynamic scheduler is preventing
the overhead of data migration among caches when possible. This can still occur if a context is
executed in different processing nodes with private caches after a context switch is performed. Finally,
note that the dynamic scheduler behaves identically as the static scheduler if there are less or equal
contexts than processing nodes.

2.21 Statistics Report
A detailed report of the simulation statistics related with the processor pipeline can be obtained by
assigning a file name to option ––x86-report. The output file is a plain-text INI file, with one section
for each thread, one for each core, and one for the complete processor.
Using the context and x86 CPU configuration files ctx-config-args-sort and x86-config-args-sort

provided in the samples/x86 directory, let us run a simulation with these two benchmarks on a
processor with 1 core and 2 threads, dumping the pipeline statistics into file x86-report. This
command should be used:
m2s --ctx-config ctx-config-args-sort --x86-sim detailed --x86-config x86-config-args-sort \

--x86-report x86-report

The generated report x86-report has four different sections. The first section [Global] summarizes
statistics for the whole processor. Section [c0] contains simulation results for core 0, whereas sections
[c0t0] and [c0t1] show the statistics corresponding to threads 0 and 1, respectively.

Global statistics
The following statistics in the [Global] section provide generic simulation results:

• Cycles. Number of simulation cycles.
• Time. Simulation time in seconds.
• CyclesPerSecond. Simulation speed, equal to Cycles divided by Time.
• MemoryUsed. Physical memory used by contexts (as allocated physical pages) at the end of the
simulation.

• MemoryUsedMax. Maximum physical memory allocated by contexts during the simulation.

Statistics related to all pipeline stages
The statistics prefixed by a pipeline stage name summarize the uops processed by each stage. They
have the following meaning:

43

• <stage>.Uop.<uop_name>. Number of uops of a given type (move, add, sub, etc.) that have been
processed in a pipeline stage throughout the simulation. The <stage> field can be Dispatch, Issue,
or Commit. This information is given globally for the processor, per core, and per hardware thread.

• <stage>.SimpleInteger, <stage>.ComplexInteger. Integer operations are classified in these statistics
as complex integer computations (multiplications and divisions) and simple integer computations
(rest).

• <stage>.Integer, <stage>.Logical, <stage>.FloatingPoint, <stage>.Memory, <stage>.Ctrl. Number
of processed uops in a given pipeline stage classified as per the computation type in integer,
logical, floating-point, memory, and control (branches, jumps, and function calls and returns)
operations.

• <stage>.WndSwitch. Total number of context switch in a given pipeline stage.
• <stage>.Total. Total number uops processed in a given pipeline stage.
• <stage>.IPC. Instructions per cycle processed in a given pipeline stage. This value is equal to the
number of uops shown in <stage>.Total divided by the total number of simulation cycles. The
specific value Commit.IPC gives the throughput of the computational node, as it refers to the
number of uops committed per cycle for a thread/core/processor. The value taken by this
statistic within the [global] section is equal to the sim.ipc statistic reported in the simulation
summary.

• <stage>.DutyCycle. Value between 0 and 1 indicating the ratio between the obtained IPC and the
peak IPC for a given stage. For example, a 4-way processor with a commit duty cycle value of
0.5 retires 2 uops per cycle on average.

Statistics related to the dispatch stage
Multi2Sim measures the usage of dispatch slots for each core and classifies them in different
categories. A dispatch slot is the opportunity for an uop to be dispatched; so if there is a dispatch
bandwidth of 4 uops/cycle, there are 4 dispatch slots that can be used by 4 different uops to be
dispatched. These are the possible classifications:

• Dispatch.Stall.used. The slot is used to dispatch a non-speculative uop in the correct path.
• Dispatch.Stall.spec. The slot is used to dispatch a mispeculated uop in the wrong execution
path.

• Dispatch.Stall.uopq. The slot is wasted because there is no uop to consume from the uop queue.
• Dispatch.Stall.rob. The uop cannot be dispatched due to a lack of space in the ROB.
• Dispatch.Stall.iq. The uop cannot be dispatched due to a lack of space in the IQ.
• Dispatch.Stall.lsq. Lack of space in the LSQ.
• Dispatch.Stall.rename. Lack of space in the physical register file.
• Dispatch.Stall.ctx. The slot is wasted because all contexts allocated to this core are suspended
or finished. Thus, there is no uop to grab from the uop queue.

The sum of all Dispatch.Stall.<how> statistics is equal to the number of simulation cycles multiplied by
the dispatch bandwidth.

44

Statistics related to the execution stage
The functional units utilization is presented for each core with the statistics prefixed with fu. They
have the following meaning:

• fu.<type>.Accesses. Number of uops issued to a given functional unit. The field <type> can be
IntAdd, IntSub, etc.

• fu.<type>.Denied. Number of uops that failed to allocate the functional unit. This occurs when
an uop is ready to be issued, but the corresponding functional unit is busy.

• fu.<type>.WaitingTime. Average time since an uop is ready to be issued until it is able to allocate
the corresponding functional unit.

Statistics related to the commit stage
In the commit stage, some statistics are recorded regarding speculative execution and misprediction
recovery.

• Commit.Branches. Number of committed control uops, including jumps, branches, and function
calls and returns.

• Commit.Squashed. Number of squashed uops after branch misprediction detections.
• Commit.Mispred. Number of control uops mispredicted in the correct path, or committed control
uops that caused processor recovery.

• Commit.PredAcc. Prediction accuracy. This is equal to 1−(Commit.Mispred/Commit.Branches).

Statistics related to hardware structures
Multi2Sim tracks occupancy and access counters for the modeled hardware structures, including the
reorder buffer (ROB), instruction queue (IQ), load-store queue (LSQ), register file (RF), branch target
buffer (BTB), and register aliasing table (RAT). These statistics are shown in the [cXtY] sections for
private-per-thread structures, and in the [cX] sections for structures shared among threads (X and Y are
core and thread identifiers, respectively).

• <struct>.Size. Number of entries, as specified in the corresponding configuration parameter.
• <struct>.Occupancy. Average number of occupied entries. This number lies between 0 and

<struct>.Size.
• <struct>.Full. Number of cycles in which the structure was full, i.e., with a number of occupied

entries equals to <struct>.Size.
• <struct>.Reads, <struct>.Writes. Number of accesses to the structure.
• IQ.WakeupAccesses. Number of associative searches in the instruction queue performed by the
wakeup logic.

45

Chapter 3

The MIPS-32 CPU Model

Version 4.2 of Multi2Sim introduces the MIPS-32 (Revision 2) little-endian architecture. The
development of the MIPS simulator involves the stages defined in Section 1.2. This chapter will be
extended with more details on each development stage, as progress is made on them.

3.1 The MIPS Disassembler
The MIPS disassembler is invoked with command line option ––mips–disasm <file>, where <file> is a
MIPS-32 ELF executable. The disassembler analyzes the ELF file, and decodes instructions from every
ELF section containing them.
Multi2Sim’s instruction decoding algorithm is based on table lookups. A main table based on the
primary opcode field contains the instructions to be decoded. When the primary opcode does not
uniquely identify an instruction, its corresponding entry in the main table points to a secondary table.
This process is repeated with a maximum of 4 consecutive table lookups. While disassembling a
program is typically not a time-critical task, the use of the instruction decoder together with the
emulator is a key factor for emulation speed.

Validation
For validation purposes, the MIPS disassembler has been designed to provide exactly the same output
as the GNU objdump tool from the MIPS toolchain released by MIPS Technologies [6]. Providing
identical outputs allows us to carry out automatic validations of large programs.

Example
Directory samples/mips in the Multi2Sim package includes both the source code and a statically
compiled executable for test program test-args, a mini-benchmark that just prints the arguments
passed in the command line. To test the MIPS disassembler, you can run the following command:

46

$ m2s --mips-disasm test-args

; Multi2Sim 4.2 - A Simulation Framework for CPU-GPU Heterogeneous Computing
; Please use command ’m2s --help’ for a list of command-line options.
; Simulation alpha-numeric ID: rJrJ7

Disassembly of section .init:

004001a4 <_init>:
4001a4: 3c1c000a lui gp,0xa
4001a8: 279c4d1c addiu gp,gp,19740
4001ac: 0399e021 addu gp,gp,t9
4001b0: 27bdffe0 addiu sp,sp,-32
4001b4: afbf001c sw ra,28(sp)
4001b8: afbc0010 sw gp,16(sp)
4001bc: 8f8289ac lw v0,-30292(gp)
4001c0: 10400003 beqz v0,4001d0 <_init+0x2c>

[...]

3.2 The MIPS Emulator
The MIPS emulator is capable of running an ELF binary, reproducing the behavior of this program
when run on a real MIPS-32, little endian machine. Multi2Sim launches the MIPS emulator
automatically when it detects the presence of a MIPS ELF binary either in the command line, or in one
of the files passed in the context configuration file with option ––ctx-config (see Section 1.5).

Trying it out
The following example shows the emulation of the test-args benchmark. When passed as the first
argument of m2s, Multi2Sim detects the binary encoding, and launches the MIPS emulator. The
following arguments in the command line act as arguments for the benchmark.

47

$ m2s samples/mips/test-args a b c

; Multi2Sim 4.2 - A Simulation Framework for CPU-GPU Heterogeneous Computing
; Please use command ’m2s --help’ for a list of command-line options.
; Simulation alpha-numeric ID: 1qKNu

number of arguments: 4
argv[0] = samples/mips/test-args
argv[1] = a
argv[2] = b
argv[3] = c

;
; Simulation Statistics Summary
;

[General]
RealTime = 0.02 [s]
SimEnd = ContextsFinished

[MIPS]
RealTime = 0.01 [s]
Instructions = 17359
InstructionsPerSecond = 1209939
Contexts = 1
Memory = 9187328

The statistics summary
After a MIPS executable has finished emulation, the statistics summary dumped in stderr includes a
section titled [MIPS]. This section contains the standard set of statistics included for all architectures,
as described in Section 1.5. Besides these, the following statistics are available:

• Contexts. Maximum number of MIPS contexts (software threads) in the guest program emulated
simultaneously at any time during the execution.

• Memory. Maximum amount of virtual memory allocated by the MIPS contexts.

3.3 Compiling your own Sources
The executables provided in the samples/mips directory of the Multi2Sim package were compiled using
a gcc compiler from an open-source pre-built tool chain. This tool chain can be downloaded from the
MIPS developers website at [6]. This tool chain is available for 64-bit versions of Linux, and includes
some documentation on its website.
After installed on your user account, tool mips-linux-gnu-gcc should be available in directory
∼/mips_linux_toolchain/bin. Assuming that this folder has been added to you $PATH environment
variable, the following command can be run to statically compile program test-args.c:

$ mips-linux-gnu-gcc test-args.c -o test-args -EL -static

48

3.4 Roadmap—Next Features
The MIPS-32 emulator is currently under active development. If you encounter any instruction not
implemented, or if your program does not yield the expected output, please email
development@multi2sim.org with the details about the program you were trying to emulate, or create a
bug report on Bugzilla [7].
In the following months, we expect to extend support for the SPEC-2006 benchmark package. The
emulator will be interfaced with a cycle-based timing simulator, and its associated visualization tool.

49

Chapter 4

The ARM CPU model

Multi2Sim 4.2 introduces the ARM (v7a ISA) processor model, following the 4-stage simulation
paradigm presented in Section 1.2. This model will be progressively extended with new features. The
content of this chapter describes the current support.

4.1 The ARM Disassembler
ARM ELF executables can be disassembled with command-line option –arm-disasm <file>. The
stand-alone disassembler provides an ISA dump that matches exactly the output provided by the GNU
tool-chain for ARM arm-none-linux-gnueabi-objdump. Making these outputs be identical helps the
validation process, by automatically comparing them character by character for all supported
benchmarks.
As an example, the following command can be used to dump the assembly code for application
test-sort, a small program implementing a sorting algorithm on a vector, compiled using GNU
cross-compiler for ARM arm-none-linux-gnueabi-gcc, and available in the simulator package in
directory samples/arm.

$ m2s --arm-disasm test-sort

; Multi2Sim 4.2 - A Simulation Framework for CPU-GPU Heterogeneous Computing
; Please use command ’m2s --help’ for a list of command-line options.
; Simulation alpha-numeric ID: krzyv

00008120 <_start>
8120: e3a0b000 mov r11, #0 ;0x0
8124: e3a0e000 mov lr, #0 ;0x0
8128: e49d1004 ldr r1, [r13, #4]
812c: e1a0200d mov r2, r13 , LSL #0 ;0x0
8130: e52d2004 str r2, [r13, #-4]!
8134: e52d0004 str r0, [r13, #-4]!
8138: e59fc010 ldr r12, [r15, #16]!
813c: e52dc004 str r12, [r13, #-4]!
[...]

4.2 The ARM Emulator
The emulation of an ARM program relies on the interaction between a disassembler and an emulator.
The disassembler provides information of each new instruction to the emulator, which then updates
the memory map and register files of the modeled CPU for every executed instruction.

50

Figure 4.1: Initialization and central loop of the functional simulation of an ARM program.

Emulation stages
The ARM emulator is launched automatically when an ARM executable is detected either as apart of
the command line, or as part of the context configuration file passed with option –ctx-config (see
Section 1.5). The emulation process is split into three consecutive stages, called program loading,
ARM instructions emulation, and system calls emulation, as described next.

• Program Loading. The state of a guest program’s execution, referred to as context, is
represented by a virtual memory image and a set of logical register values (Figure 4.1a). The
former refers to the values stored in each memory location in the context’s virtual memory, while
the latter refers to the contents of the ARM registers, such as r0, r1, r14, r15 etc.
The Linux Embedded Application Binary Interface (EABI) specifies an initial value for both the
virtual memory image and register values, before control is transferred to the new context. The
initial state of the context is inferred mainly from the program ELF binary, and the
command-line run by the user to launch it, during the process called program loading.Program
loading consists of the following steps:

– First, the ARM binary is analyzed with an ELF parser. An ELF file contains sections of
code (ARM instructions) and initialized data, jointly with the virtual address where they
should be initially loaded. For each ELF section, the program loader obtains its virtual
offset and copies it into the corresponding location in the virtual memory image.

– The context stack is initialized. The stack is a region of the guest virtual memory image
pointed to by register r13(sp). Initially, it contains a set of program headers copied from
the ELF file, followed by an array of environment variables, and the sequence of
command-line arguments provided by the user.

– The ARM registers are initialized. The r13(sp) register is set to point to the top of the
stack, and the r15(pc) register is set to point to that memory location containing the code
to run when control is first transfered to the new context. The general-purpose registers for
ARM (r0-r12) are reset during the initialization phase.

51

• Emulation of ARM instructions. The emulation can start on the initialization of the context.
Iteratively, the functional simulator reads a sequence of bytes at the guest memory address
pointed to by guest register r15. Then, the represented ARM instruction is obtained by calling
the Multi2Sim ARM decoder and disassembler. The instruction is emulated by updating
accordingly the guest virtual memory image and registers. Finally, guest register r15 is updated
to point to the next ARM instruction.

• Emulation of system calls. A special case of machine instruction is the software interrupt
ARM instruction svc. Specifically, instruction svc 0x0 is used by an application to request a
system service (system call). When Multi2Sim encounters a system call in the emulated
application, it updates the context status accordingly depending on the system call code and its
arguments, providing the guest program with the view of actually having performed the system
call natively. The process of handling system call is similar to the process described in Section
for x86 CPU functional simulation.
System call number is stored in the r7 register for ARM CPUs. The system call code is interpret
by the handler and corresponding system call is emulated.

The high-level actions performed by the functional simulator loop are represented in Figure 4.1b,
including the emulation of both ARM instructions and system calls.

Trying it out
The following command is an example of the execution of an ARM emulation. The simulation runs
the test-sort mini-benchmark available in the samples/arm directory of the Multi2Sim package. The
output of the benchmark is shown in stdout, while the output of the simulator is given in stderr.

$ m2s test-sort

; Multi2Sim 4.2 - A Simulation Framework for CPU-GPU Heterogeneous Computing
; Please use command ’m2s --help’ for a list of command-line options.
; Simulation alpha-numeric ID: sgFbH

Creating a vector of 500 elements...
Sorting vector...
Finished

;
; Simulation Statistics Summary
;

[General]
RealTime = 0.36 [s]
SimEnd = ContextsFinished

[ARM]
RealTime = 0.33 [s]
Instructions = 253688
InstructionsPerSecond = 757746
Contexts = 1
Memory = 9080832

The statistics summary
When Multi2Sim finishes execution after having run an ARM emulation, the statistics summary
dumped in stderr includes a section titled [ARM]. This section contains the standard set of statistics

52

included for all architectures, as described in Section 1.5. Besides these, the following statistics are
available:

• Contexts. Maximum number of ARM contexts (software threads) in the guest program emulated
simultaneously at any time during the execution.

• Memory. Maximum amount of virtual memory allocated by the ARM contexts.

4.3 Compiling Your Own Sources
Program sources can be compiled for ARM using the GPU cross-compiler tool chain, available at [8].
The following command line can be run to compile benchmark test-sort, using the source file
test-sort.c available in directory samples/arm:

$ arm-none-linux-gnueabi-gcc -o test-sort test-sort.c -static

A static linking format is used for cross-compilation of the source code for ARM executable
generation. The gcc linker can be configured to generate a statically linked executable by adding the
-static option into the command line. In this case, the code of any shared library used by the program
(such as the mathematic library, the POSIX thread library, glibc library, etc.) is linked together with
the program. This provides us with the option of executing ARM based binaries on x86 native
machines using Multi2Sim.

4.4 Roadmap
The following extensions are planned as for future work on the ARM model:

• Implementation of the Thumb2 and NEON SIMD ISA.
• Support for the SPEC-2006 and EEMBC benchmarks as well as other parallel benchmark suites.
• Architectural simulation stage with a cycle-based model.

53

Chapter 5

OpenCL Execution

5.1 The OpenCL Programming Model
OpenCL is an industry-standard programming framework [9] designed specifically for developing
programs targeting heterogeneous computing platforms, consisting of CPUs, GPUs, and other classes
of processing devices. OpenCL’s programming model emphasizes parallel processing by using the
Single Program Multiple Data (SPMD) paradigm, in which a single piece of code, called a kernel,
maps to multiple subsets of input data, creating a massive number of parallel threads. An OpenCL
application is formed of a host program and one or more device kernels.

The Host Program
The host program is the starting point for an OpenCL application. It executes on the CPU where the
operating system is running. The host program is written in C, C++, or any other programming
language for which OpenCL bindings exist. During its execution, the host program calls OpenCL API
functions, such as clGetDeviceIDs, clCreateBuffer, etc. This program is linked with a vendor-specific
library, referred hereafter as the OpenCL runtime, that provides an implementation for all OpenCL API
functions.
An OpenCL host program can be compiled with any standard C/C++ compiler, such as gcc, as long
as it is linked with an OpenCL runtime. The resulting program binary contains only CPU ISA
instructions that depend on the compiler target architecture (for example, x86 ISA).

The Device Kernel
The device kernel is code written in a different programming language than the host program, namely
OpenCL C. OpenCL C is an extended superset of C, or in other words, a programming language very
similar to C. In most cases, the OpenCL kernel runs on a GPU device, but it can also run on a CPU.
An OpenCL kernel is usually compiled during the execution of the OpenCL host program. The host
program provides the kernel source as an embedded string, and passes it to API call
clCreateProgramWithSource. The vendor-specific runtime compiles this source before launching its
execution on the GPU. Alternatively, one can compile the kernel off-line, and then load the binary
clCreateProgramWithBinary. This is a less portable option, but it is preferred in the context of OpenCL
simulation (see Section 13.4). The kernel binary contains ISA instructions specific to the target device
(for example, Southern Islands ISA).
Figure 5.1 provides a graphical representation of the basic execution elements defined in OpenCL. An
instance of the OpenCL kernel is called a work-item, which can access its own pool of private memory.

54

Figure 5.1: Software entities defined in the OpenCL programming model. An ND-Range is formed of
work-groups, which are, in turn, sets of work-items executing the same OpenCL C kernel code.

Work-items are arranged into work-groups with two basic properties: i) those work-items contained in
the same work-group can perform efficient synchronization operations, and ii) work-items within the
same work-group can share data through a low-latency local memory pool.
The totality of work-groups form the ND-Range (grid of work-item groups), which shares a common
global memory space. To comply with the OpenCL model, work-groups should be able to execute in
any order. Thus, neither synchronizations nor communications through global memory accesses are
allowed among work-groups. This restriction allows for compatibility and scalability with any
generation of compute devices, regardless of the amount of available parallel processing resources.

5.2 Runtime Libraries and Device Drivers

An Initial Decision for Emulation
Many of the applications we run on our computers rely on vendor-specific libraries to communicate
with hardware devices. This is the case for OpenCL programs communicating with GPUs or OpenGL
applications communicating with the X server on the system. When considering to run such
applications on Multi2Sim, two main emulation approaches come to mind, based on the interface used
by guest (simulated) code to interact with the simulator:

• As a first option, one can just run an unmodified x86 executable normally on Multi2Sim. When
the program attempts to call external functions, its embedded dynamic loader searches for
matching library names, and eventually stumbles upon the vendor-specific libraries installed on
the machine, against which it resolves the external call. When these calls involve privileged
actions on the system, such as actual communication with the hardware, system calls are
performed. As described in Section 1.3, the x86 emulator intercepts the system calls, and thus,
it is responsible of updating the application state to match what the OS-level driver would do on
a real machine.
This option presents at least two major problems. First, the interface between the user-space
libraries and the runtime are internally managed by the vendor of the involved hardware; they are
subject to change at any time, causing potential unexpected incompatibilities with Multi2Sim’s
x86 emulator. Second, this interface is unknown to us in the case of close-source drivers, such as
most state-of-the-art GPU vendor software.

55

• The second option is re-linking the x86 program binary using Multi2Sim-specific libraries that
implement all application’s external calls (e.g., OpenCL or OpenGL calls). When the guest
program calls a library function, it is then seamlessly invoking Multi2Sim guest code, which can
communicate with the rest of the simulator using system calls.
With this approach, the communication between the user library and the emulator is completely
independent of the vendor’s software. Furthermore, the aforementioned re-linking process can be
managed automatically by Multi2Sim and transparently to the user, as long as the original
program binary has been linked dynamically (more details ahead).

Due to its flexibility, the second approach has been chosen in Multi2Sim to support applications that
rely on vendor-specific software.

Definitions
The following concepts are used throughout this chapter to describe the interaction between software
and (emulated) hardware components, both in native and simulated execution environments.

• A runtime library, or simply runtime, is a software module running in the user space,
implementing a given well-known interface. Functions in this interface are invoked by a user
program, with the likely ultimate purpose of accessing system hardware. Runtime libraries on a
native framework (sometimes referred to as user-level drivers) can be either generic or provided
by the hardware vendor. Runtime libraries on Multi2Sim run as emulated code, and are found in
the /runtime directory.

• A device driver, or simply driver, is a software module running in privileged mode. When the
runtime library requires access to the hardware, it invokes the device driver through system calls,
such as ioctl, or open/read/write calls using special file descriptors. On a native environment,
the code serving these system calls is a kernel module that has direct access to the hardware.
On Multi2Sim, drivers are native (not simulated) code located in directory /src/driver, which
communicate with the hardware emulators, located in directories /src/arch/*/emu.

• The Application Programming Interface (API) is the interface between a runtime library and the
user program. The API is exactly the same for a vendor-specific runtime as for a Multi2Sim
runtime, which is why they can be used interchangeably to satisfy external references in the user
program.

• The Application Binary Interface (ABI) is the interface provided between a device driver and a
runtime library, based on system calls. On Multi2Sim, each ABI between a pair runtime-driver is
assigned a unique system call code unused in Linux.

Figure 5.2 graphically represents the interaction between software and hardware modules, comparing a
native environment and Multi2Sim. Each block in the diagram (program, runtime, driver, hardware, or
emulator) is complemented with specific examples for the native and simulated execution of an
OpenCL program on an AMD Southern Islands GPU.

Compatibility between Runtime and Driver Versions
An ABI call is a system call with a unique code for a specific driver. Its first argument is an ABI call
code, identifying that call uniquely. The rest of the system call arguments are the ABI call arguments,
and their number and type vary for each specific call. For all runtime libraries implemented in
Multi2Sim, ABI call code 1 is reserved for a standard call checking runtime/driver version
compatibility. The only argument of this function is a structure containing two integer numbers: a

56

Figure 5.2: Interaction between user code, OS-code, and hardware, comparing native and simulated
environments.

57

major and a minor version number. The structure is passed by reference from the runtime to the
driver, and the driver returns its version information.
Once the ABI call returns, the runtime checks version compatibilities as follows: If the major version
number of the driver and the runtime do not match, the runtime terminates execution reporting
version incompatibilities. If the minor version number of the driver is lower than the minor version
number of the runtime, the same incompatibility is reported. In other words, the driver must have the
same or newer minor version than the runtime running on it.
The actions required from the ABI/runtime/driver designer related with version number updates are
the following: If any aspect of the ABI is updated, making the new interface incompatible with the
previous (e.g., changing the type of an argument), the major version number of both the driver and
the runtime must be increased. If, in contrast, the ABI is extended with a new feature while still
supporting the same set of existing features, the minor version number of both the driver and the
runtime must be increased.
This mechanism guarantees that an application linked with an older runtime can still run correctly on
a newer driver, as long as the driver and runtime major version numbers match, and even though the
minor version numbers differ; this means that the driver has been extended with new functionality, but
is still providing correct functionality for the older runtime.

Compilation of Runtime Libraries
Since Multi2Sim version 4.1, the compilation of the runtime libraries is integrated with the rest of the
simulator’s build system. Thus, no additional action is required to build the runtimes other than
running make on the source root directory.
On 64-bit machines, the following must be considered. Runtime libraries contain guest code, i.e., code
linked with a guest program that runs on Multi2Sim. Since Multi2Sim emulates 32-bit x86 code,
runtime libraries are generated for this target architecture using command gcc -m32. On some systems,
additional libraries need to be installed for gcc to support this flag. If the -m32 flag is not available, the
build system issues a warning, and compilation of runtime libraries is skipped.
If compilation succeeds, the build system automatically places runtime libraries on directory
$M2S_ROOT/lib/.libs. This directory is looked up automatically by the simulator when running
dynamically linked guest programs that try to load a runtime. Alternatively, if Multi2Sim is installed
on the user’s machine with command make install, runtime libraries are installed on the default
system library path (e.g., /usr/local/lib).

Benchmark Compilation
The source code of a benchmark using an external runtime library is characterized by having a set of
#include directives referencing the runtime headers, as well as a set of references to the runtime’s
global symbols, such as variables or function calls. To successfully build the program, the following
resources additional to the source code are required: At compile time, the runtime headers must be
available to the compiler pre-processor; at linking time, the runtime libraries must be available to
resolve external references.
In the first case, header files can be used either from a native installation of the vendor runtime, or
from a local copy provided on the simulator source tree. For example, an OpenCL host program
including the <CL/cl.h> header file can be compiled either by searching the header on the default
#include directory of the native installation, if any, or on $M2S_ROOT/runtime/include. The following two
commands illustrate these two options:

58

$ gcc -c vector-add.c -o vector-add -I/opt/AMDAPP/include
$ gcc -c vector-add.c -o vector-add -I$M2S_ROOT/runtime/include

Regarding the runtime libraries, it is also possible to use both vendor or Multi2Sim libraries, but more
considerations are needed here. The following table discusses the implications of four different
approaches to link a guest program with a runtime library, based on whether the compiler command
line specifies dynamic or static linking (-static option), and whether the vendor’s or Multi2Sim’s
library is chosen at compile time (option -l).

Guest program linked
dynamically with Multi2Sim
runtime.

The guest program needs to load the runtime at execution time.
The runtime needs to be available either on any default system
library path (if Multi2Sim was installed using make install), or on
the default library subdirectory within the source code tree
($M2S_ROOT/lib/.libs). If the guest program is run on a different
machine than it was compiled on, library version compatibility
issues may occur. If run natively, the guest program still uses the
Multi2Sim runtime.
This option is convenient when adding new features to
Multi2Sim’s driver or runtime, and using the dynamically linked
application for testing purposes. By just running make on
Multi2Sim’s root directory, any changes in the runtime or driver
will make them get rebuilt. The guest program does not need to
be recompiles; during its execution, it will automatically load the
new version of the runtime.
Example:
gcc vector-add.c -o vector-add -lm2s-opencl

-I$M2S_ROOT/runtime/include -L$M2S_ROOT/lib/.libs

Guest program linked
statically with Multi2Sim
runtime.

When the guest program is copied to another machine, there is
no dependence with the new local libraries, and only the simulator
executable m2s is needed to run it. However, a statically compiled
application is insensitive to changes in the runtime libraries on
the Multi2Sim trunk. If these changes happen, the guest program
needs to be recompiled (re-linked) with the new runtime. When
run natively, the guest program still uses the Multi2Sim runtime.
This approach is used to create executable programs for the
benchmarks kits on M2S-Cluster (see Chapter 12), where
portability becomes a critical issue. Benchmark packages
published on the website also use this approach.
Example:
gcc vector-add.c -o vector-add -lm2s-opencl

-I$M2S_ROOT/runtime/include -L$M2S_ROOT/lib/.libs -static

Continued on next page. . .

59

Guest program linked
dynamically with the
vendor’s runtime.

If run natively, the guest program tries to load the vendor-specific
runtime library at execution time. If run on Multi2Sim, the
simulator intercepts attempts from the dynamic linker to access
the vendor’s runtime, and redirects it instead to the associated
Multi2Sim runtime. The target library needs to be present either
in the default system library paths, or on the default library
directory of the source tree ($M2S_ROOT/lib/.libs).
This option is useful when the same program binary is intended
to run correctly both in native and simulated environments,
when, for example, validating program outputs.
Example:
gcc vector-add.c -o vector-add -lOpenCL -I/opt/AMDAPP/include

-L/opt/AMDAPP/lib/x86

Guest program linked
statically with the vendor’s
runtime.

In most cases, this option is not available, since distributions of
vendor runtimes do not usually provide library versions for static
linking. In case it is available, the guest program will always run
using the vendor runtime it was linked with, regardless of whether
it runs natively or on Multi2Sim. During the execution of the
program, the simulator will probably fail as soon as the vendor
runtime tries to communicate with the native driver, using
hardware-specific, unimplemented combinations of system calls.
Example:
gcc vector-add.c -o vector-add -lOpenCL -I/opt/AMDAPP/include

-L/opt/AMDAPP/lib/x86 -static

Existing Runtimes and Redirections
On Linux applications, the dynamic linker runs in user space. Whenever it tries to load a new dynamic
library to incorporate its code into the process’s memory map, the .so file containing the library is
accessed through an open system call, and loaded with read or mmap system calls.
Since system calls are intercepted and serviced by Multi2Sim, the simulator can detect an attempt
from the dynamic linker to load a dynamically linked runtime library. Multi2Sim then redirects the
path intended by the application into the path where the corresponding Multi2Sim runtime is located.
As a result of the open system call, a file descriptor is return that points to the redirected library,
instead of that originally intended by the guest program. This mechanism allows for a total binary
compatibility between the native and the simulated environment, as long as the program was linked
dynamically with the vendor-provided runtime.
Table 5.2 lists all runtime libraries currently supported, with the names of the associated
vendor-specific and Multi2Sim binary fies.

5.3 The OpenCL Runtime
Multi2Sim’s OpenCL execution framework has been restructured and rewritten in version 4.1, to
represent a more realistic organization based on runtime libraries and device drivers. This approach is
in contrast to earlier versions, where the runtime only transformed OpenCL API calls into ABI system
calls with the same arguments and behavior.

60

Table 5.2: Supported runtime libraries and redirections from vendor-specific to Multi2Sim runtimes.

Runtime name
and version Vendor runtime

Redirected M2S
runtime Description

OpenCL 1.1 libOpenCL.so libm2s-opencl.so Support for the OpenCL API, used for
the emulation of the AMD Southern
Islands GPU.

CUDA 4.0 libcuda.so

libcudart.so

libm2s-cuda.so Support for the NVIDIA CUDA
Runtime/Driver API, used for the
emulation of an NVIDIA Fermi GPU.

OpenGL 4.2 libGL.so libm2s-opengl.so Support for the OpenGL API, with base
and extension functions, used for the
emulation of graphic applications.

GLUT 2.6.0 libGLUT.so libm2s-glut.so This library allows the user to create and
manage windows containing OpenGL
contexts, and also read the mouse,
keyboard and joystick functions.

GLU 8.0.4 libGLU.so libm2s-glu.so This library consists of a number of
wrapper functions that invoke base
OpenGL API functions. They provide
higher-level drawing routines from the
more primitive routines that OpenGL
provides.

GLEW 1.6.0 libGLEW.so libm2s-glew.so This library handles initialization of
OpenGL extensions.

Bringing the OpenCL execution burden into the runtime (user code) allows the new library to execute
kernels on the CPU. This would have been difficult within Multi2Sim code, since it has no way to
easily initiate interaction with —or schedule work onto— guest threads. It also allows for non-blocking
OpenCL calls, which would have been difficult to implement using system calls, as they suspend the
guest thread that initiated them.
Currently, the runtime exposes two OpenCL devices to the application linked with it, returned with a
call to clGetDeviceIDs: the x86 and the Southern Islands device. If the OpenCL host program runs on
Multi2Sim, all devices are accessible; if it runs natively on the real machine, only the x86 device is
visible.

Execution Outside of Multi2Sim
A novel feature introduced in Multi2Sim 4.1 is the support for native execution of the OpenCL
runtime. An application can be linked statically or dynamically with this runtime, and then executed
directly from a shell, without running it on top of Multi2Sim. When run natively, only the x86 device
is accessible from the application. The reason is that the execution of x86 device kernels is completely
implemented in the runtime, including the OpenCL object management, kernel binary loading,
work-group scheduling, and data management.
To determine which devices to make visible, the runtime detects whether it is running on Multi2Sim or
on real hardware right at the initialization of the OpenCL framework, when the application invokes
clGetPlatformIDs. This is done by attempting to communicate with the Multi2Sim driver through the

61

dedicated system call interface. When running natively, the real OS receives this event and reports an
invalid system call code; when running on Multi2Sim, the driver successfully acknowledges its
presence. Based on this outcome, the runtime decides whether to instantiate structures of
complementary devices, other than the x86 one.

User Options
The runtime has some configurable options, passed by the user through environment variables. The
reason to use environment variables, as opposed to Multi2Sim command-line options, is that the
runtime runs as guest code, which cannot access Multi2Sim’s memory (at least without the overhead
of an explicit communication mechanism). Also, and more importantly, the runtime can run natively,
in which case the command-line option alternative is just discarded. Environment variables can be
accessed both by the runtime running natively and on Multi2Sim.
The following options are supported:

• M2S_OPENCL_DEBUG. When set to 1, this variable forces the OpenCL runtime to dump debug
information for every API call invoked by the host program. Each call includes the function
name and the value for its arguments. Information is also provided on state updates for events,
tasks, and command queues.

• M2S_OPENCL_BINARY. This variable contains the path of the OpenCL kernel binary that the runtime
should load if the application attempts to run function clCreateProgramWithKernel. An
application is expected to use clCreateProgramWithBinary when linked with Multi2Sim’s OpenCL
runtime. However, if the application’s source code is not available, and the original code creates
OpenCL programs from their source, the alternative is compiling the kernel source on a machine
with the AMD tools using m2c ––amd, importing the generated binary, and setting environment
variable M2S_OPENCL_BINARY to point to it.

As an example, let us run benchmark FFT from the APP SDK 2.5 benchmarks suite for x86, available
on the website. This benchmark is linked statically with Multi2Sim’s OpenCL runtime. By passing
option –device cpu to the benchmark, we can force it to only query available CPU devices when
running clGetDeviceIDs. Option ––load FFT_Kernels.bin tells the benchmark to use this kernel binary.
Since we are using the x86 device, we can run the benchmark natively without invoking the simulator.
The following command line activates the debug information in the runtime:

$ M2S_OPENCL_DEBUG=1 ./FFT --load FFT_Kernels.bin --device cpu

[libm2s-opencl] call ’clGetPlatformIDs’
[libm2s-opencl] num_entries = 0
[libm2s-opencl] platforms = (nil)
[libm2s-opencl] num_platforms = 0xffe445fc

[libm2s-opencl] call ’clGetPlatformIDs’
[libm2s-opencl] num_entries = 1
[libm2s-opencl] platforms = 0x83627b0
[libm2s-opencl] num_platforms = (nil)

[...]

Command Queues
The OpenCL host program can schedule non-blocking tasks using command queues, such as
host-device memory transfers or kernel executions. These operations may take a significant amount of

62

time, but they do not necessarily block the host thread that scheduled them. To allow the application
to run non-blocking tasks, the runtime associates one software thread (pthread) to each OpenCL
command queue object. While one specific command queue’s thread blocks when effectively executing
a task, the host program’s main thread continues to run, possibly queuing other tasks in parallel.
The runtime also supports OpenCL events. When an application wants to synchronize tasks across
command queues, it can bind them to OpenCL event objects. A task can have an event object
associated with it, while at the same time, it can depend on the completion of a set of other events.
When the runtime completes the execution of one task, it automatically wakes up any dependent tasks
in all command queues, and proceeds execution.

Supporting Multiple Devices
The implementation of OpenCL objects in the runtime can be classified in two categories:

• The runtime front-end contains an implementation of the most significant OpenCL API calls, as
well as all generic OpenCL objects (platform, context, command queue, event, etc.).

• The runtime back-ends contain implementations for those OpenCL objects with device-specific
information, namely the OpenCL program, kernel, and device objects. There is one runtime
back-end per device exposed to the application. In devices other than x86, the runtime back-end
is in charge of communicating with the device driver using ABI system calls. The x86 back-end
runs completely at the runtime back-end level, and without any interaction with a device driver,
since the host and device architectures are the same.

The runtime is designed internally with a clear interface between the front-end and the back-ends,
based on sets of call-back functions in program, kernel, and device objects. While a portable OpenCL
application does not alter its source code when targeting different devices (other than the call that
selects the device itself), the functions triggered in the runtime’s front-end are also the same. Only
when a device-specific action is required, the front-end invokes a standard device-specific function in a
back-end to do the job. For example, a buffer being transferred from host to device involves a
device-specific call that copies the buffer content into the appropriate memory space.
With this division of responsibilities, the OpenCL runtime never deals with device-specific details—it
only maintains the association of opaque, device-dependent objects with the back-ends that created
them. Similarly, the runtime back-ends never have to deal with object lifetime management, command
queues, event-based synchronization, or other devices. This modular organization allows for a
convenient extension of the runtime to support additional device back-ends.

5.4 The x86 Back-End
The new OpenCL library exposes multicore x86 CPUs as OpenCL devices. Because the x86 runtime
back-end does not require communication with a device driver, it can run both on Multi2Sim and on a
native environment.

x86 Kernel Binaries
The x86 runtime back-end supports AMD-compliant ELF kernel binaries. These binaries can be
generated using command-line tool m2c ––amd on a machine with a correct installation of the AMD
Catalyst driver and APP SDK (see Section 13.4). The following commands can be used to compile a
vector-addition kernel program targeting the x86 device, assuming that it appears listed as shown
below:

63

$ m2c --amd --amd-list

ID Name, Vendor
---- --

1 ATI RV770, Advanced Micro Devices, Inc.
2 ATI RV710, Advanced Micro Devices, Inc.

[...]
18 Scrapper, Advanced Micro Devices, Inc.
19 Intel(R) Xeon(R) CPU W3565 @3.20GHz, GenuineIntel

--
20 devices available

$ m2c --amd --amd-device Intel vector-add.cl

Device 19 selected: Intel(R) Xeon(R) CPU W3565 @3.20GHz
Compiling ’vector-add.cl’...

vector-add.bin: kernel binary created

The code generated by the compiler for work-items makes heavy use of streaming SIMD extensions
(SSE) of the x86 ISA. SSE makes the manipulation of vector data types, such as float4, particularly
efficient. Also, we observed that the internal AMD compiler avoids using x87 FPU instructions, and
replaces them with further SSE instructions. To support emulation of these benchmarks, Multi2Sim
4.1 also includes an extended support for SSE x86 instructions.

ND-Range Execution
To harness the parallelism of a multi-core CPU, the x86 runtime back-end creates a worker thread for
each CPU core. Each worker thread runs a scheduler that dequeues work-groups from a global
work-group queue and runs their work-items.
For a given kernel, a work-group can be uniquely represented by its starting position. Right before the
kernel execution, the CPU driver determines the positions of all the work-groups in the ND-Range and
places all of them onto the work-group queue. During execution, the worker threads keep on
dequeuing and executing work-groups. When the queue becomes empty and all the worker threads are
idle, the kernel execution is complete.

Work-Group Execution
The work-items in a work-group are all executed on the same CPU core by a single worker thread.
They are started in order of work-group ID, where higher dimensions are more numerically significant
than lower ones. Upon the absence of synchronization points, each work-item completes before the
next one starts. However, every time a barrier is found, context switches occur until all work-items
have reached it. After this, the original work-item can resume execution until either completion or the
next barrier.
Context switches rely on the allocation of a stack for each work-item, in such a way that the state of a
suspended work-item can later be restored when its execution resumes. Unlike a GPU, where multiple
work-items execute in lock-step, the wavefront size for a CPU is one work-item.
During the execution of a barrier, an internal function in the x86 runtime back-end is invoked, which is
responsible for evicting the current work-item and scheduling the next. At this point, the runtime
pushes all of the CPU registers onto the current work-item’s stack, and saves the value of the
instruction and stack pointers in a thread-local data structure. Then, the runtime looks up the stack
and instruction pointers of the next work-item and restores those values. If the next work-item has

64

never run before, the instruction pointer just contains the entry point for the kernel; if the next
work-item is waking up from a barrier, the runtime pops all register values off the stack before the
kernel resumes.

Work-Item Execution
In an AMD x86 kernel binary, the kernel code is embedded as an internal dynamic ELF library (.so
file). As a result of the application calling clCreateProgramWithBinary, the x86 runtime back-end
extracts the embedded library and links it with the host program. This library contains one internal
symbol per OpenCL kernel function encoded in the binary, pointing to the entry point of the kernel
code. Each work-item in the ND-Range must execute one instance of this function.
Some built-in functions called by the OpenCL kernel are not actually implemented as functions, such
as get_global_id() or get_local_size(). Instead, the x86 code in the kernel function expects the
runtime back-end to have initialized a region of its stack with a data structure containing the
geometric properties of each work-item, a pointer to the work-group’s local memory region, and a
pointer to the barrier function.

5.5 The Southern Islands Back-End
When an application linked with the OpenCL runtime queries the OpenCL devices with function
clGetDeviceIDs, a Southern Islands GPU device is exposed as part of the device list. This device only
shows up on simulated execution, i.e., it is not accessible when running the host program natively.

Southern Islands Kernel Binaries
The Southern Islands runtime back-end supports AMD-compliant ELF binaries. They can be generated
using command-line tool m2c ––amd on a machine with a correct installation of the AMD Catalyst driver
and APP SDK (see Section 13.4). The following commands can be used to compile a vector-addition
kernel program targeting the Southern Islands device, assuming that it appears listed as shown below:

$ m2c --amd --amd-list

ID Name, Vendor
---- --

0 Cypress, Advanced Micro Devices, Inc.
1 ATI RV770, Advanced Micro Devices, Inc.
2 ATI RV710, Advanced Micro Devices, Inc.

[...]
13 Caicos, Advanced Micro Devices, Inc.
14 Tahiti, Advanced Micro Devices, Inc.
15 Pitcairn, Advanced Micro Devices, Inc.
[...]
--
20 devices available

$ m2c --amd --amd-device Tahiti vector-add.cl

Device 19 selected: Tahiti, Advanced Micro Devices
Compiling ’vector-add.cl’...

vector-add.bin: kernel binary created

65

ND-Range Execution
While simulation of an OpenCL program targeting a Southern Islands GPU takes advantage of all
common functionality implemented in the runtime front-end, the Southern Islands runtime back-end
has very a very limited functionality. Most actions specific to Southern Islands device, program, and
kernel objects are managed by the device driver with Multi2Sim code. The runtime back-end is mostly
in charge of forwarding requests into the Southern Islands driver through ABI system calls.
The most significant ABI call is that in charge of effectively launching the ND-Range. The following
sequence of events takes place in this case. The application performs a call to clEnqueueNDRangeKernel,
which causes the runtime to create a task and place it on the tail of a certain command queue. The
thread in the runtime front-end associated with that command queue eventually processes the task,
realizing that the requested OpenCL kernel targets the Southern Islands device, hence invoking the
Southern Islands runtime back-end. The back-end performs an ABI system call that transfers control
to Multi2Sim, which in turn kicks off the Southern Islands emulator to start running the kernel. The
command queue thread in the runtime front-end suspends until the GPU emulator completes the
execution of the ND-Range.
Chapter 7 describes in detail all actions occurring between the time an ND-Range is sent to the
Southern Islands GPU emulator and the time its emulation finishes.

5.6 Legacy OpenCL Runtime
The execution model described in this chapter is introduced in Multi2Sim 4.1 for the execution of
programs linked with vendor-specific runtime libraries. This model is based on a modular specification
of the software associated with the OpenCL host program, the runtime library, the device driver, and
the GPU hardware emulation. In previous versions of the simulator, the boundaries between each of
these software modules had not been clearly manifested yet.
The Multi2Sim OpenCL runtime was lacking any contribution to the behavior of the program, other
than communication with the driver. In contrast, the burden of the OpenCL object management lay
completely on the driver code. The motivation to shift as much functionality as possible to the
runtime was mainly its capacity to allocate new memory in the guest program memory map, and
spawn or synchronize child threads to manage multiple command queues. These tasks are much
harder to take care of at the driver level.
The older version of the OpenCL runtime and driver can be found in runtime/opencl-old and
src/driver/opencl-old, respectively. As of Multi2Sim 4.1, the Evergreen GPU emulation still relies on
the old implementation. In this runtime, each OpenCL API call is implemented with a system call,
passing the API call code as an argument, followed by the OpenCL function arguments. Thus, the API
and the ABI are equivalent interfaces.

66

Chapter 6

The AMD Evergreen GPU Model

Since Version 3.0, Multi2Sim introduces a model for AMD graphics processing units (GPUs). This
work is possible thanks to a collaboration with AMD, providing some unpublished details about the
interface between software and hardware modules, as well as undocumented features of the targeted
instruction set. The AMD Evergreen ISA [10] has been chosen as the baseline architecture for this
model.

6.1 Mapping the OpenCL Model into an AMD Evergreen GPU
The Evergreen family of AMD GPUs (a.k.a., Radeon HD 5000 series) is a flagship in the AMD’s APP
lineup, designed to target not only graphics applications, but also general-purpose data-intensive
applications. Figure 6.1b presents a block diagram of the Radeon HD 5870 GPU [11], a mainstream
device in the Evergreen family. As discussed next, this architecture is designed to provide a conceptual
match with the OpenCL programming model (5.1).
When an OpenCL kernel is launched on the Radeon HD 5870 compute device, the ND-Range is
initially transferred to it. A global front-end (ultra-threaded dispatcher) processes the ND-Range, and
assigns work-groups to any of the 20 available compute units in any order. Each compute unit has
access to the global memory, implemented as a hierarchy of private 8KB L1 caches, 4 shared 512KB
L2 caches, and the global memory controllers.
Each compute unit contains a set of 16 stream cores, each devoted to the execution of one work-item.
All stream cores within the compute unit have access to a common 32KB local data storage (LDS),
used by the work-items to share data at the work-group level. The LDS is the implementation of the
local memory concept as defined in OpenCL. Finally, each stream core contains 5 processing elements
to execute Evergreen machine instructions in a work-item, plus a file of general-purpose registers,
which provides the support for the private memory concept as defined in OpenCL.
There are two important novelties in an Evergreen device that are not exposed to the programming
model. First, considering the mapping between a work-group with a compute unit, the number of
stream cores (16) in the compute unit is much lower than the maximum number of work-items (256)
in a work-group. To resolve this, stream cores are on one hand time-multiplexed in 4 slots, providing
the illusion that each stream core is capable of running 4 work-items concurrently. This defines the
concept of a wavefront as the total number of work-items (64) virtually executing at the same time on
a compute unit.
Still, a work-group contains up to 4 wavefronts that share execution resources. To manage these
resources, a wavefront scheduler is in charge of dynamically selecting wavefronts for execution using a
round-robin policy. Thus, the wavefront is also commonly referred to as the scheduling unit in a GPU.

67

a) Elements defined in the OpenCL programming model. Work-items
running the same code form work-groups, which in turn, compose the

whole ND-Range. (5.1)

b) Simplified block diagram of the Radeon HD 5870 hardware architecture. This
GPU belongs to the Evergreen family of AMD devices.

Figure 6.1: OpenCL Programming Model and Evergreen Hardware Architecture.

Moreover, the Evergreen family runs all work-items from the same wavefront in a single instruction
multiple data (SIMD) fashion. In other words, a shared instruction fetch unit provides the same
machine instruction for all stream cores to execute.
The second distinctive feature of the Evergreen family is the support for 5-way Very Long Instruction
Word (VLIW) bundles of arithmetic instructions, defined at compile time. The high performance
associated with the Radeon HD 5870 comes from the ability to issue up to 5 floating-point scalar
operations in a single cycle, one per VLIW slot. The hardware support for this is contained in each
stream core as a set of five processing elements, labeled x, y, z, w, and t. The latter provides extended
functionality for complex (or transcendental) operations, such as logarithm, exponential, square root,
etc.

6.2 The Evergreen Instruction Set Architecture (ISA)

Evergreen Assembly
When the GPU emulator receives the OpenCL kernel to execute, an emulation loop starts in which
Evergreen instructions are fetched, decoded, and executed. In this section, the basic format and

68

Figure 6.2: Example of AMD Evergreen assembly code: (a) main CF clause instruction counter; (b)
internal clause instruction counter; (c) ALU clause; (d) TEX clause.

characteristics of the AMD Evergreen instruction set are discussed, based on the sample assembly code
shown in Figure 6.2.
Evergreen assembly uses a clause-based format. The kernel execution starts with an external CF
(control flow) clause, whose instructions are labeled with 2-digit numbers in the code. CF instructions
can affect the program control flow (such is the case of instruction 03), write data to global memory
(04), or transfer control to a secondary clause, such as an ALU (arithmetic-logic unit) clause (00, 02),
or a TEX (fetch through a texture cache) clause (01). In the code, indented instructions are those
belonging to secondary clauses.
In an ALU clause, instructions are packed into ALU groups, also called VLIW bundles. In the sample
code, ALU groups are those preceded by 1-digit labels. An ALU group is run at a time in a stream
core, where each ALU instruction label reflects the processing element assigned to that instruction (x,
y, z, w, or t). ALU instructions include data transfers (MOV), arithmetic-logic operations (LSHR, ADD_INT),
accesses to local memory (LDS_WRITE), or condition evaluations (PREDNE_INT).
Possible types of operands for ALU instructions are immediate values (such as 0x3 or 0.0f), or any of
the 128 general purpose logical registers (R0, R1, etc.), where each register is a set of 4 32-bit values
(x, y, z, w). Also, an ALU instruction operand can be any processing element’s output for the last
executed ALU group: the outputs of four regular processing elements can be accessed through the
four components (x, y, z, w) of the Previous Value special register (PV), while the output of
transcendental processing element is accessed through the Previous Scalar special register (PS).
Finally, constant memory is defined as globally accessible storage initialized by the CPU, whose
positions can be also used as ALU instruction operands (KC).
Regarding a TEX clause, associated instructions are in charge of performing global memory reads. By
running in separate hardware blocks of a compute unit, execution of TEX clauses can be overlapped
with the execution of other clauses, hiding potentially long latencies when accessing global memory.
This brief description is aimed at roughly interpreting the format of the Evergreen assembly. To obtain
more information about the Evergreen ISA and instruction formats, please refer to [10].

69

Figure 6.3: Example of 4 work-items (i0..i3) from the same wavefront executing Evergreen flow-control
instructions. Conditional branches are evaluated differently for each work-item, causing thread diver-
gence.

Control Flow and Thread Divergence
The SIMD execution model used by the compute units present on an Evergreen GPU causes the same
machine instruction to be executed concurrently by all work-items belonging to the same wavefront
(see Section 6.1). This implementation simplifies hardware by allowing a common instruction fetch
engine to be shared among stream cores, but becomes problematic when a conditional branch
instruction is resolved differently in any pair of work items, causing thread divergence.
To address thread divergence, the Evergreen ISA provides each wavefront with an active mask and an
active mask stack. The active mask is a 64-bit map, where each bit represents the active status of an
individual work-item in the wavefront. If a work-item is labeled as inactive, the result of any arithmetic
computation performed in its associated stream core is ignored, preventing it from changing the kernel
state. The strategy to support thread divergence consists in bringing all work-items together through
all possible execution paths, while keeping active only those work-items whose conditional execution
matches the currently fetched instruction flow. To support nested branches and procedure calls, the
active mask stack is used to push and pop temporary active masks [10].
Figure 6.3 shows an example in which 4 work-items (i0..i3) execute the C code shown on the left. The
corresponding Evergreen assembly code (center) assumes registers R0.x and R1.x to contain the
work-item ID and the private variable x, respectively. The active mask is initially set to 1110 (set bits
represented by gray-filled squares on the right), and the stack contains one previously pushed mask set
to 1111, as the result of an hypothetical previous flow-control operation. When running this code,
those initially active work-items with an ID other than 0 (i.e., i1 and i2) will set their private variable x

to 20, whereas work-item i0 will set its copy of x to 10.
Instruction 00 ALU_PUSH_BEFORE pushes the old active mask into the stack, evaluates condition
get_local_id(0)==0, and updates the active mask as per those work-items satisfying the condition.
Thus, clause 02 ALU is effective only for work-item i0. Instruction 03 ELSE inverts the active mask and
and ’s it (logic product) with the mask at the top of the stack. In other words, it activates only those
work-items that do not satisfy the condition and that were already active before starting the if block.
This causes clause 04 ALU to affect only work-items i1 and i2. Finally, instruction 05 POP restores the

70

Figure 6.4: The emulation loop in the Evergreen functional simulation module.

original active mask by popping it from the stack.
Instructions 01 JUMP and 03 ELSE provide an additional functionality in the case where all work-items
evaluate the conditional expression equally (not reflected in the example). Specifically, instruction 01

JUMP ADDR(03) jumps to instruction 03 if the active mask is completely set to 0, and performs no action
otherwise. This improves performance, since there is no need to fetch instruction 04, if no work-items
are going to be active during its execution. Similarly, instruction 03 ELSE POP_CNT(1) ADDR(6) pops the
active mask from the stack and jumps to 06 if its updated active mask is completely clear. Otherwise,
its operation is limited to the aforementioned active mask update.

Evergreen Emulation at the ISA Level
The portion of the OpenCL program running on the CPU (x86 binary) is in charge of setting up the
OpenCL kernel to be executed on the GPU. For example, the CPU application can load first an
OpenCL kernel binary (with a call to clCreateProgramWithBinary), then set up the kernel arguments
(clSetKernelArg), and finally send the OpenCL kernel to the GPU for execution
(clEnqueueNDRangeKernel). The latter call causes Multi2Sim to transfer control to the GPU emulator,
which is fed with the information gathered from the former intercepted functions. Similarly to the x86
CPU functional simulation, the GPU emulation process is split into a program loading step and a
emulation loop.
Program loading is the first stage in the GPU emulation, in which all storage elements representing the
OpenCL kernel state are initialized. As previously shown in Figure 6.1a, the kernel state is represented
by a common global memory, a per work-group local memory, and a per work-item local memory. The
initialization of storage components can be local work-item identifiers, kernel parameters, or
information extracted from the kernel binary image, such as the assembly code of the kernel, or
initialized variables.
With a proper initial state of the OpenCL kernel, the GPU emulation loop is started, according to the
flow diagram shown in Figure 6.4. In every iteration, an instruction is read and disassembled from the
main CF clause, and emulated once for an entire group of work-items running in a SIMD fashion. CF
instructions can either affect the actual flow of the program (JUMP, ELSE, etc.), or invoke the execution
of a secondary clause (ALU_PUSH_BEFORE, TEX, etc.).
In the former case (left of dashed line in Figure 6.4), the emulation consists in updating the active
mask of the SIMD group so as to disable execution of those work-items for which the global execution
path does not temporarily match their private flow control. In the latter case (right of the dashed
line), a new internal loop is run for the emulation of ALU or TEX clauses, in which each instruction is
emulated separately for all those active work-items. When the clause finishes, the emulation returns to
the initial loop.

71

6.3 The Evergreen GPU Device Architecture
Since Multi2Sim 3.1, the processor model includes the architectural simulation of an Evergreen GPU.
This option can be activated by using the command-line argument ––evg-sim detailed. Similarly to the
x86 architectural simulator, the Evergreen architectural model is based on calls to the Evergreen
functional simulation, which provides traces of executed machine instructions.
Evergreen GPU devices are formed of groups of compute units, and each compute unit contains a set
of stream cores. In turn, each stream core is composed of five processing elements, aimed at executing
one Evergreen VLIW instruction bundle. Each hardware component is mapped to a different OpenCL
software entity at runtime, as described in section 6.1. This section describes the GPU architectural
model implemented in Multi2Sim, based on the real architecture of an AMD Evergreen GPU.

Work-Group Scheduling and Configuration
The GPU device can be seen as the hardware unit aimed at running an OpenCL ND-Range. Each
GPU compute unit executes one or more OpenCL work-groups at a time. When the CPU launches an
OpenCL kernel into the GPU, work-groups are initially mapped into compute units until all of them
reach their maximum occupancy. When a work-group finishes execution, the associated compute unit
allocates a new waiting work-group, and this process is repeated until the entire ND-Range is executed.
The main Evergreen GPU architectural parameters can be tuned in the Evergreen GPU configuration
INI file used with option ––evg-config <file>. This option should always be used together with option
––evg-sim detailed for a detailed Evergreen GPU simulation. Section [Device] in this file can contain
any of the following main configuration variables:

• Frequency. Frequency in MHz of the Evergreen GPU pipelines. Any latency given in the
Evergreen configuration file in number of cycles will be assumed within this frequency domain.
The default value is 700MHz.

• NumComputeUnits. Number of compute units in the GPU. Each compute unit executes one
work-group at a time.

• NumStreamCores. Number of stream cores in a compute unit. Each stream core contains five
processing elements able to execute an Evergreen VLIW bundle.

• NumRegisters. Number of registers in a compute unit, also referred to as private memory. The
register file is shared among all work-items and work-groups executing in the compute unit at a
time.

• WavefrontSize. Number of work-items within a wavefront.
A statistics report of the Evergreen architectural simulation can be obtained with option ––evg-report

<file>. Like the configuration files, this report follows a plain text INI file format, and provides the
following variables in the [Device] section:

• NDRangeCount. Number of OpenCL kernels scheduled into the GPU with calls to
clEnqueueNDRangeKernel performed by the OpenCL host program.

• Instructions. Total number of Evergreen machine instructions executed in the GPU. This
counter is incremented by one for each instruction executed by a whole wavefront, regardless of
the number of work-items forming it.

• Cycles. Number of cycles the GPU has been active. The device is considered active as long as
any of its compute units has a work-group mapped to it.

• InstructionsPerCycle. Quotient of Instructions and Cycles.

72

Mapping Work-Groups to Compute Units
A GPU compute unit can run several OpenCL work-groups at a time. However, the specific number of
work-groups depends on several architectural and run-time parameters, given by the GPU
configuration files, the launched OpenCL kernel binary, and the ND-Range global and local sizes. The
architectural factors that limit the number of work-groups mapped to a compute unit are listed next,
together with the associated configuration variables in the evergreen simulator (option ––evg-config

<file>, section [Device]):
• Limit in number of work-groups. In a real GPU, each work-group needs a hardware structure
to store information related to it. Since the total architectural storage in a compute unit devoted
to this is limited, there is a maximum predefined number of work-groups that can be mapped.
Variable MaxWorkGroupsPerComputeUnit in the GPU configuration file controls this limit.

• Limit in number of wavefronts. There is also a limited amount of total wavefronts whose
state can be held at a time by a compute unit, specified by variable MaxWavefrontsPerComputeUnit

in the configuration file. The number of wavefronts forming a work-group is determined by the
OpenCL host program, during the call to clEnqueueNDRangeKernel that specifies the local
(work-group) size. Depending on this runtime parameter, the actual limit in work-groups per
compute unit is limited by MaxWorkGroupsPerComputeUnit and MaxWavefrontsPerComputeUnit,
whichever is reached first.

• Limit in number of registers. Each work-item needs a specific amount of registers to execute,
which can be found out from encoded metadata in the OpenCL kernel binary. Since there is a
limited amount of registers in the compute unit, specified with variable NumRegisters, the number
of work-groups can be also constrained by this.
Registers are allocated in chunks, whose size and granularity can be tuned with two additional
configuration variables. Variable RegisterAllocSize defines the minimum amount of registers
that can be allocated at a time, while variable RegisterAllocGranularity defines the granularity
of these allocations. If the latter is equal to Wavefront, the number of registers allocated per
wavefront is the first multiple of RegisterAllocSize equal or greater than the number of registers
needed by all its work-items. In contrast, if RegisterAllocGranularity is set to WorkGroup, a
multiple of the chunk size if allocated at the granularity of the whole work-group.

• Limit in local memory size. Finally, each work-group uses a specific amount of local memory,
which is determined by the sum of the static local variables encoded in the OpenCL binary
kernel, and the dynamic local memory specified by the OpenCL host program at runtime. The
total amount of local memory used by all work-groups allocated to a compute unit cannot
exceed the size of the physical local memory (section [LocalMemory], variable Size). Thus, this
imposes an additional limit in number of allocated work-groups per compute unit.
Similarly to registers, local memory bytes are allocated in chunks (section [LocalMemory], variable
AllocSize). The amount of local memory allocated by a work-group is the first multiple of
AllocSize equal or greater than the actual local memory required by a work-group.

Notice that the runtime global and local sizes must allow at least one single work-group to be mapped
to a compute unit. If this condition is not satisfied, for example because the number of registers
allocated by a single work-group exceeds NumRegisters, the simulator will stop with an error message
reporting this problem.
The final limit in number of work-groups per compute unit is determined by Multi2Sim right after the
OpenCL function clEnqueueNDRangeKernel is executed by the simulated OpenCL host program. This
value is computed as the minimum of the four limiting factors presented above.

73

Figure 6.5: Block Diagram of a GPU Compute Unit pipeline.

6.4 The Compute Unit Architecture
The compute unit architecture of an Evergreen GPU is represented in Figure 6.5. There are three main
components in a compute unit, called CF (Control-Flow) engine, ALU (Arithmetic-Logic) engine, and
TEX (Texture) engine, devoted to execute CF, ALU, and TEX clauses of an OpenCL kernel binary,
respectively.
When an OpenCL work-group is initially mapped to the compute unit, the main CF clause of the
OpenCL kernel is started on the CF engine. The work-items forming the running work-group are
combined into smaller groups called wavefronts. The main property of a wavefront is that all its
work-items execute in a SIMD (single-instruction multiple-data) fashion, that is, only one instruction is
fetched for all wavefront’s work-items, but each of them runs it based on its own private data. All
wavefronts forming the mapped work-group are contained initially in the ready wavefront pool, from
which they are selected by the CF engine for execution.
CF instructions, or in other words, instructions forming a CF clause, can be classified in three major
categories:

• Secondary ALU clause trigger. When this type of instruction executes, a secondary ALU
clause starts. The current wavefront allocates the ALU engine until all instructions in the
secondary clause complete. ALU instructions are VLIW bundles formed of at most five
instruction slots, which can perform arithmetic-logic operations and accesses (both reads and
writes) to local memory.

• Secondary TEX clause trigger. When this type of instructions executes, the current
wavefronts launches a secondary TEX clause on the TEX engine, which remains allocated until
the TEX clause completes. TEX instructions are read accesses to the global memory hierarchy.

• Standard CF instructions. The remaining instructions not triggering any secondary clause are
executed right in the CF engine. These instructions are aimed at updating the work-item active
mask, performing synchronizations, issuing global memory writes, or jumping to other positions
of the CF clause.

The report dumped with simulator option ––evg-report <file> includes detailed statistics for every
compute unit in the device. Each of the N compute units has an associated section named
[ComputeUnit <id>], where <id> is a number between 0 and N − 1. The included variables and their
meaning are:

• WorkGroupCount. Number of work-groups mapped to the compute unit. At a given time, only one
work-group is mapped, so multiple mappings are always done sequentially.

74

Figure 6.6: Block Diagram of the CF Engine of a Compute Unit.

• Instructions. Total number of instructions run in the compute unit. For each wavefront
executing an Evergreen instruction in a SIMD manner, this counter is incremented once.

• Cycles. Number of cycles that the compute unit had some work-group mapped to it.
• InstructionsPerCycle. Quotient of Instructions and Cycles.

The architecture of the execution engines is based on pipeline stages. All of them have a front-end
fetch stage that reads instructions from an instruction memory private to the engine, and the rest of
the stages vary depending of the engine purpose. The next sections detail the architecture of each
execution engine.

The Control-Flow (CF) Engine
Figure 6.6 shows the CF engine architecture, based on a pipeline with 4 stages.

• Fetch stage. A running wavefront is selected from the wavefront pool. Since all work-items in
the wavefront execute the same instruction at a time, each wavefront has a single program
counter associated with it, which is used to address the instruction memory module containing
the CF clause. When a wavefront is selected by the fetch hardware, it is extracted from the
wavefront pool, and it will be only returned to it at the last stage of the pipeline. This ensures
one single instruction to be in flight for each wavefront at a time.
After selecting a wavefront, an entry in a fetch buffer is allocated, associated with the current
wavefront. This buffer contains as many entries as number of wavefronts, and each entry has an
8-byte capacity, which is the size of a CF instruction. After the latency of the instruction
memory access, the instruction bytes stored in the allocated fetch buffer entry will be ready for
the next stage to be processed.
Every cycle, the fetch stage selects a new wavefront to be fetched, switching among them in a
round-robin fashion at the granularity of one single CF instruction. If eventually the wavefront
pool runs out of wavefronts, instruction fetch is stalled until a wavefront is placed back into the
pool.

• Decode stage. This stage selects one wavefront with an occupied entry from the fetch buffer,
and decodes the instruction contained in the associated entry. The decoded instruction is placed
in the corresponding entry of the CF instruction buffer, which similarly contains one entry per
possible wavefront.

75

The decode stage selects wavefronts in a round-robin fashion from the fetch buffer, skipping
those entries that contain no instruction bytes in them. If there is no empty entry in the
instruction buffer corresponding to a ready entry in the fetch buffer, the decode stage stalls.

• Execute stage. Based on one entry in the instruction buffer corresponding to a selected
wavefront, the execute stage runs the contained CF instruction. If the CF instruction triggers a
secondary clause, this instruction will be placed in an entry of the input queue of the ALU/TEX
engine. When the secondary ALU or TEX execution engine becomes available, it will start
executing the secondary clause triggered by the CF instruction. Finally, when the secondary
clause completes, the CF instruction can move to the next pipeline stage. Instructions requiring
different execution engines can run in parallel.
Since CF instructions run by different execution engines might have different latencies, they
reach the last stage of the CF engine pipeline in a different order than they were fetched.
However, since these instructions belong to different wavefronts, the order of execution does not
alter the correctness of the program.
The execute stage selects wavefronts from the instruction buffer in a round-robin fashion,
skipping empty entries. If the instruction buffer has no candidate to be launched, the execution
stage stalls. No stall can occur due to unavailable execution resources, since input queues for
ALU/TEX engines are assumed to have enough space for all wavefronts if needed.

• Complete stage. When CF instructions complete execution (including all instructions run in a
secondary clause, if any), they are handled by the last stage of the pipeline. The only purpose of
the complete stage is placing the associated wavefront back into the wavefront pool, making it
again a candidate to be fetched.
An exception of instructions that need not complete before reaching this stage are global
memory writes. These are CF instructions run in the CF engine (not a secondary clause), and
they just issue the write access to the global memory hierarchy without waiting for the actual
write operation to complete.

The configuration parameters of the CF engine can be specified in a section named [CFEngine] in the
GPU configuration file (option ––evg-config <file>). The allowed configuration variables are:

• InstructionMemoryLatency. Latency of an access to the instruction memory in number of cycles.
The set of statistics related with the CF Engine can be found in variables CFEngine.<xxx> under section
[ComputeUnit <id>] in the simulation report dumped with option ––evg-report <file>. This is a list of
the statistics and their meaning:

• CFEngine.Instructions. Number of CF instructions executed in the CF engine.
• CFEngine.InstructionsPerCycle. Quotient of CFEngine.Instructions and Cycles, as reported in the
same [ComputeUnit <id>] section. Notice that the CF engine is active exactly as long as the
compute unit has a work-group mapped to it.

• CFEngine.ALUClauseTriggers. Number of CF instructions triggering a secondary ALU clause.
• CFEngine.TEXClauseTriggers. Number of CF instructions triggering a secondary TEX clause.
• CFEngine.GlobalMemWrites. Number of CF instructions writing into global memory.

The Arithmetic-Logic (ALU) Engine
The architecture of the ALU engine is shown in Figure 6.7. The ALU engine is a 5-stage pipeline that
is mapped to a wavefront after a CF instruction triggers a secondary ALU clause. CF instructions

76

Figure 6.7: Block Diagram of the ALU Engine of a Compute Unit.

triggering ALU clauses will be placed in an input queue at the ALU engine. The ALU engine selects
the CF instruction at the head of this queue, and run all instructions in its secondary clause. When the
last instruction of the clause is fetched, the ALU engine extracts the CF instruction from the input
queue, and starts fetching instructions from the next secondary clause. Instructions from different
secondary clauses can coexist in the pipeline at a given time.

• Fetch stage. The memory instruction module is accessed to fetch instructions from the current
position in the ALU clause. There is only one wavefront associated with the ALU engine, and a
predetermined sequential range for an initial and an ending program counter (instruction
address) that needs to be fetched, without any jump in between.
ALU instructions are VLIW bundles that can contain up to 5 arithmetic-logic instructions (8
bytes each) and 4 literal constants (4 bytes each). The size of a VLIW bundle is variable, and
can be as large as 56 bytes. To deal with this variability, the fetch stage just dumps continuous
sequences of bytes in to the fetch buffer (circular queue with a minimum capacity of 56 bytes),
that will be interpreted as actual instructions in the following stages.

• Decode stage. The sequence of bytes at the head of the fetch queue corresponding to a
complete VLIW bundle are analyzed and extracted. An interpreted version of it is stored in an
instruction buffer able to store one VLIW bundle. If the bytes at the head of the fetch queue do
not correspond to a complete VLIW bundle yet, or if the instruction buffer after the decode
stage is occupied by the previous VLIW bundle, the decode stage stalls.

• Read stage. The source operands for each instruction comprising the VLIW bundle are read.
These operands can come from the register file (also referred to as per-work-item private
memory), or from local memory. In the former case, one cycle is enough to complete the
operands read, while the latter depends on the latency specified for the local memory access,
and the amount of work-item accesses that can be coalesced.

• Execute stage. This is the core stage of a GPU, where arithmetic instructions are carried out in
each stream core. When the source operands for all work-items in the wavefront are ready, the

77

execution stage starts to issue the operations into the stream cores. Each stream core accepts
one VLIW bundle every cycle. However, notice that the number of available stream cores does
not necessarily match (i.e., might be smaller than) the number of work-items in the current
wavefront.
The solution for this is splitting the wavefront into subwavefronts at the execute stage, where
each subwavefront contains as many work-items as available stream cores (say N). In the first
execution cycle, work-items 0 to N − 1 are issued to the pool of stream cores. In the second
execution cycle, work-items N to 2N − 1 are issued, and so on. This mechanism is known as
time-multiplexed execution of a wavefront, with as many time slots as number of subwavefronts.
Time-multiplexing at the cycle granularity relies on the processing elements (functional units) on
the stream cores to be fully pipelined. When a stream core receives a VLIW bundle, its
execution latency will be several cycles (configurable), and the result of the operation will be
available only after this latency. However, the stream core is ready to accept a new operation
right in the next cycle.
In the Radeon HD 5870 GPU, wavefronts are composed of 64 work-items, while there are 16
stream cores per compute unit. Thus, there are 4 subwavefronts in a wavefronts or, in other
words, stream cores receive VLIW bundles from a wavefront in a 4-slot time-multiplexed manner.
Notice that if the latency of an operation matches exactly (or is lower than) the number of
subwavefronts, it will be completely hidden, and the processing elements will be fully utilized.
The division of a wavefront into subwavefronts is an architectural decision that allows the
wavefront size and the number of stream cores per compute unit to be chosen as independent
parameters. Stream cores are expensive resources forming the bulk of the GPU area, and an
increase of their number has a significant hardware cost impact. However, increasing the
wavefront size reduces the need for fetch resources (more work-items execute one common
instruction), although it might increase thread divergence. Thus, the hardware cost versus
thread divergence trade-off can be handled as a separate problem, without involving the number
of stream cores in the design decision.

• Write stage. The result of the computation is written back to the destination operands. Again,
these operands can be located in private memory (register file), or in local memory. Writes to
local memory are asynchronous, so the write stage need not stall until they complete. When the
last VLIW bundle of an ALU clause exits the write stage, the CF instruction triggering this
clause will continue in the CF engine.

The configuration parameters of the ALU engine can be specified in a section named [ALUEngine] in
the GPU configuration file (option ––evg-config <file>). The allowed configuration variables are:

• InstructionMemoryLatency. Latency of an access to the instruction memory in number of cycles.
• FetchQueueSize. Size in bytes of the fetch queue. The minimum size is equal to the maximum

size of an ALU instruction (56 bytes).
• ProcessingElementLatency. Latency of each processing element (x, y, z, w, t) of a stream core in
number of cycles. This is the time since an instruction is issued to a stream core until the result
of the operation is available.

The set of statistics related with the ALU Engine can be found in variables ALUEngine.<xxx> under
section [ComputeUnit <id>] in the simulation report dumped with option ––evg-report <file>. This is a
list of the statistics and their meaning:

• ALUEngine.WavefrontCount. Number of wavefronts mapped to the ALU engine. At a given time,
only one wavefront can be executing an ALU clause, so the mappings occur sequentially.

78

Figure 6.8: Block Diagram of the TEX Engine of a Compute Unit.

• ALUEngine.Instructions. Number of VLIW bundles executed in this engine. The counter is
incremented once for each SIMD instruction, regardless of the number of work-items affected by
it.

• ALUEngine.InstructionSlots. Number of instructions executed in this engine. Each VLIW bundle
can contain up to five instruction slots. The counter is incremented once for each SIMD
instruction.

• ALUEngine.LocalMemoryInstructionSlots. Subset of ALUEngine.InstructionSlots accessing local
memory.

• ALUEngine.VLIWOccupancy. List of five integer numbers. The first element represents the number
of VLIW bundles with one occupied slot. The second number represents the number of VLIW
bundles with two occupied slots, and so on.

• ALUEngine.Cycles. Number of cycles that a wavefront was mapped to the ALU engine.
• ALUEngine.InstructionsPerCycle. Quotient of ALUEngine.Instructions and ALUEngine.Cycles.

The Texture (TEX) Engine
The TEX engine consists of a 4-stage pipeline, devoted to the execution of global memory fetch
instructions, embedded in TEX clauses. The TEX engine executes instructions from the secondary
clause triggered by the CF instruction at the head of the input queue. When the last TEX instruction
is fetched for the clause, the CF instruction is extracted from the input queue, and the next TEX
clause begins to be fetched.

• Fetch stage. Instruction bytes are fetched from instruction memory starting from the TEX
clause initial address sequentially until the clause end, without any possible execution branch.
The fetched bytes are stored at the queue of a circular fetch buffer. Each TEX instruction is
16-byte wide, so this is the minimum size required for the fetch buffer.

• Decode stage. A TEX instruction is decoded from the fetch buffer, and its interpreted contents
are moved into the following instruction buffer. If the contents of the fetch buffer do not
correspond to a complete TEX instruction yet, or the instruction buffer is occupied by a previous
TEX instruction, the decode stage stalls.

• Read stage. Memory addresses are read from the register file, independently for each work-item
forming the current wavefront. For each work-item, a read request to the global memory
hierarchy is performed. Simultaneous read requests of different work-items might be coalesced
into a single read operation (see Chapter 9).

79

The read instruction is inserted at the end of the load queue, which contains all in-flight global
memory reads. If there is no free entry in the load queue, the read stage stalls.

• Write stage. A completed global memory read instruction is extracted from the head of the
load queue. The data fetched from memory is written back into the register file. If the read
instruction at the head of the load queue is not complete, or there is no instruction in the load
queue, the write stage stalls. When the last TEX instruction of a secondary clause leaves the
write stage, the CF instruction triggering this clause can continue traversing the CF engine
pipeline.

The configuration parameters of the TEX engine can be specified in a section named [TEXEngine] in
the GPU configuration file (option ––evg-config <file>). The allowed configuration variables are:

• InstructionMemoryLatency. Latency of an access to the instruction memory in number of cycles.
• FetchQueueSize. Size in bytes of the fetch queue. The minimum size is 16 bytes, which is the

exact size of a TEX instruction.
• LoadQueueSize. Size of the load queue in number of instructions. The load queue communicates

the read and write stages of the TEX engine pipeline. The number of entries in this queue
determines the maximum number of global memory reads in flight.

The set of statistics related with the TEX Engine can be found in variables TEXEngine.<xxx> under
section [ComputeUnit <id>] in the simulation report dumped with option ––evg-report <file>. This is a
list of the statistics and their meaning:

• TEXEngine.WavefrontCount. Number of wavefronts mapped to the TEX engine. At a given time,
only one wavefront can be executing a TEX clause, so the mappings occur sequentially.

• TEXEngine.Instructions. Number of TEX instructions executed in this engine. The counter is
incremented once for each instruction, regardless of the number of work-items affected by it.

• TEXEngine.Cycles. Number of cycles that a wavefront was mapped to the TEX engine.
• TEXEngine.InstructionsPerCycle. Quotient of TEXEngine.Instructions and TEXEngine.Cycles.

Periodic Report
Multi2Sim allows to track the progress of a set of performance statistics over the dynamic execution of
an OpenCL kernel. A periodic report can be dumped for either a subset or all of the wavefronts in
execution at specific configurable intervals. Section [PeriodicReport] is used in the GPU configuration
file (option ––evg-config <file>) for this purpose. The following variables can be used:

• File. Prefix for files where the periodic report is dumped. For example, if File is set to
my-report, the report for wavefront 2 within work-group 1 will be stored in file my-report-wg1-wf2.

• Interval. Number of instructions executed by a wavefront after which a new entry in the report
file will be dumped. Instructions are given here as VLIW bundles, where CF and TEX
instructions count as one single bundle each.

• Scope. This variable specifies the subset of wavefronts in the ND-Range that should dump a
report. The following values are accepted:

– FirstWavefrontFirstWorkgroup. Only the first wavefront in the entire ND-Range creates a
report file and dumps periodic statistics.

– FirstWavefrontAllWorkgroups. First wavefront of all work-groups.
– AllWavefrontsFirstWorkgroup. All wavefronts of only the first work-group.
– AllWavefrontsAllWorkgroups. All wavefronts in the ND-Range.

80

The periodic report consists of a set of records, with as many entries as the total number of VLIW
bundles executed by the wavefront divided by Interval. Each field of a record represents a given
performance statistic, and its meaning is specified in a header as part of the dumped report files. The
following performance statistics are presently provided:

• local_mem_accesses.Number of local memory accesses performed in the interval, adding up all
accesses performed by all work-items in the wavefront.

• global_mem_accesses. Number of global memory accesses performed in the interval, adding up all
accesses performed by all work-items in the wavefront. This statistic assumes that for any global
memory read / write action, all the work items in the wavefront will access global memory.

6.5 The Evergreen GPU Memory Architecture
The GPU memory hierarchy is divided into three memory scopes, called private memory, local
memory, and global memory. The access to each memory scope is defined by software, so there are
different instructions or instruction fields specifying which memory scope is targeted in a given memory
access. Private memory is accessible per work-item, local memory is shared by a work-group, and
global memory is common for the whole ND-Range.
Global memory has a significantly higher latency than local and private memory. To improve its
performance, Evergreen GPUs use multiple levels of caches in the global memory scope, forming the
global memory hierarchy. As opposed to the GPU memory scopes, accesses to different components
within the global memory hierarchy are decided by hardware, transparently to the programmer, in a
similar way as the cache hierarchy works on a CPU.
This section describes the model and configuration used in Multi2Sim for the private and local
memory scopes. Since private and local memory are on chip and accessed by the ALU engines, their
configuration is discussed in this chapter. Global memory is accessed by the TEX engine and is
discussed in Chapter 9 in detail.

Private Memory
GPU private memory is a different way to refer to the compute unit’s register file. The register file
provides a private copy of register values for each work-item of the work-group mapped to a compute
unit at a given time. It is accessed by the ALU and TEX engines during the corresponding read and
write stages in their respective pipelines.
Multi2Sim provides a model with no contention for register file accesses. In the worst case, a
wavefront mapped to the ALU engine is accessing the register file at the same time as a wavefront
mapped to the TEX engine is trying to access it. Even in this case, the involved wavefronts are
different, and their work-items will access separate regions of the register file. A per-wavefront banked
organization of the register file with enough ports to feed each wavefront’s work-item is the equivalent
hardware implementation for a model without register file access contention.

Local Memory
There is one local memory module in each compute unit of the GPU, accessible to all work-items of
the current work-group running on it. Local memory is accessed by specific ALU instructions, i.e.,
instructions within an ALU clause mapped to the ALU engine. In a GPU, the local memory latency is
higher than private memory because its capacity is higher, and each work-item has access to its entire
contents. In the case of local memory, accesses happen in the read or write stages of the ALU engine

81

pipeline. When an instruction accesses local memory, each work-item in the wavefront mapped to the
ALU engine issues an access to a potentially different memory location.
Every memory instruction causes each work-item executing it to provide memory addresses based on
their private copies of the registers containing them. This causes a chunk of memory address to be
enqueued in an access buffer associated to the accessed memory. However, all enqueued addresses
need not be translated into actual memory accesses in most of the cases. Since it is likely for adjacent
work-items to access also adjacent memory locations, some contiguous accesses in the access queue
might fall within the same memory block, and thus they can be coalesced into one single memory
access. The coalescing degree depends on the memory block size and the generated memory
addresses. The algorithm discussing the coalescing of addresses is discussed in Chapter 9.
Multi2Sim allows a flexible configuration of the local memory parameters in the [LocalMemory] section
of the GPU configuration file (––evg-config <file> option). Also, detailed statistics about local
memory accesses are obtained in variables LocalMemory.<xxx> of the GPU pipeline report (––evg-report
<file> option). In the case of local memory, configuration parameters are specified in section
[LocalMemory] in the GPU configuration file, using option ––evg-config <file>. The following variables
can be used:

• Latency. Number of cycles since the time a read/write port is allocated until the access to the
memory component completes.

• BlockSize. Size of the block. This is the minimum access unit for a memory component. For
cache memories, it determines the transfer unit between different cache levels. For any memory
component, it determines the coalescing degree among concurrent accesses.

• Banks. Number of banks (N) in which the memory contents are organized. Given a continuous
memory address space, bank 0 stores memory blocks starting at address 0, N , 2N , ..., bank 1
stores memory blocks 1, N + 1, 2N + 1, ..., and bank N − 1 stores memory blocks N − 1,
2N − 1, 3N − 1, etc.

• ReadPorts, WritePorts: Number of read and write ports per bank.
For each local memory element, a set of statistics is dumped in the simulation reports. The statistics
can be found in the report associated with the ––evg-report <file> option, using variables prefixed
with LocalMemory under sections [ComputeUnit <id>]. The set of statistics related to local memory
elements and their meaning is the following. Since local memory is explicitly managed by the OpenCL
program, every read / write access to local memory is a hit in the local memory.

• Accesses. Total number of accesses requested from a compute unit.
• Reads, Writes. Number of read requests received from a compute unit.
• CoalescedReads, CoalescedWrites. Number of reads/writes that were coalesced with previous
accesses. These are requested accesses that never translated into an effective memory access,
since they matched a block targeted by a previous access in the same cycle. See Chapter 9 for
more details on coalescing.

• EffectiveReads. Number of reads actually performed (= Reads − CoalescedReads).
• EffectiveWrites. Number of writes actually performed (= Writes − CoalescedWrites).

Global Memory
The GPU global memory, as modeled in Multi2Sim, is structured as a cache hierarchy completely
configurable by the user. A dedicated configuration file is used for this purpose, passed to the
simulator with the ––mem-config <file> option. The configuration of the CPU and the GPU memory

82

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 16 32 48 64 80 96 112 128

W
a
v
e
fr

o
n
ts

 p
e
r

c
o
m

p
u
te

-u
n
it

Registers per work-item

a) Number of registers used per work-item.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25 30

W
a
v
e
fr

o
n
ts

 p
e
r

c
o
m

p
u
te

-u
n
it

Local memory used per work-group (KB)

b) Local memory size per work-group.

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

W
a
v
e
fr

o
n
ts

 p
e
r

c
o
m

p
u
te

-u
n
it

Work-items per work-group

c) Work-group size.

Figure 6.9: Output plots generated by the GPU Occupancy Calculator

hierarchy is done in a similar manner and is discussed in Chapter 9 The statistics report of the accesses
performed on each component of the global memory hierarchy can be obtained at the end of a
simulation by using option ––mem-report <file>. See Chapter 9 for details on the reported statistics.

6.6 The GPU Occupancy Calculator
In a compute unit of an AMD GPU, there are several limits on the number of OpenCL software
elements that can be run on top of it at a time, referred here as compute unit occupancy. Multi2Sim
optionally dumps occupancy plots based on static and run-time characteristics of the executed
OpenCL kernels.
This option is used by using option ––evg-calc <prefix> to the command line used to run the
simulation, where <prefix> is part of the file names used to dump the generated figures in EPS format.
The occupancy calculator requires the tool gnuplot to be installed in your system.
As an example, the following command can be used to run a 64× 64 matrix multiplication kernel, and
generate the GPU occupancy plots. This example is based on the MatrixMultiplication benchmarks
included in the AMD OpenCL benchmark suite, available on Multi2Sim’s website:

m2s --evg-sim detailed --evg-calc calc MatrixMultiplication \
--load MatrixMultiplication_Kernels.bin -q

This command produces three EPS images as an output, named calc.0.registers.eps,
calc.0.local_mem.eps, and calc.0.work_items.eps, where 0 is the index of the launched OpenCL
ND-Range. These three plots are shown in Figure 6.9.

83

Number of Registers per Work-Item
The total number of registers in a compute unit is limited. If a work-item uses too many registers, it
will eventually prevent other wavefronts from being executed concurrently (Figure 6.9a). The aspect
of this curve depends on the wavefront size, the number of registers available on the compute unit,
and the number of registers used by each kernel instance (work-item).
The number of registers per work-item is exclusively decided at compile time, and does not depend on
any runtime configuration by the OpenCL host program.

Local Memory Used per Work-Group
A compute unit has also a limited amount of local memory. When the compute unit allocates a
work-group that increases the amount of used local memory, it will reduce the total number of
wavefronts that can be allocate to the same compute unit (Figure 6.9b). The aspect of this curve
depends on the local memory available on the compute unit, the local memory used by each
work-group, the wavefront/work-group sizes, and the memory allocation chunk size.
The local memory used by a work-group is potentially decided both at compile time (static local
variables) and run-time (dynamic local variables).

Work-Group Size
Finally, the work-group size also determines the total number of wavefronts that can be allocated
(Figure 6.9c). Since the allocation unit is an entire work-group (set of wavefronts), this plot shows
peaks instead of a continuous descent. The work-group size is exclusively decided at run-time by the
OpenCL host program.

6.7 Trying it out
In this section, a quick guide is shown to try a simulation of an OpenCL program for Evergreen GPUs.
After downloading, unpacking, and building Multi2Sim (see Section 1.5), you will need to download
the package containing the pre-compiled OpenCL benchmarks in the Benchmarks section of the
Multi2Sim website [12]. The package is called m2s-bench-amdapp-2.5-evg.tar.gz and can be unpacked
with the following command:

tar -xzvf m2s-bench-amdapp-2.5-evg.tar.gz

One of the included benchmarks corresponds to the classical matrix multiplication algorithm for GPUs
(MatrixMultiplication directory), which is a pre-compiled version of the OpenCL sample included in
AMD’s Accelerated Parallel Processing (APP) software kit [13]. Two important files can be found for
this benchmark:

• MatrixMultiplication: this is a statically linked x86 executable file, embedding a specific
implementation of the OpenCL library required by Multi2Sim (more about this later). This
executable has been generated from the MatrixMultiplication.cpp and MatrixMultiplication.hpp

sources, not included in the package.
• MatrixMultiplication_Kernels.bin: this is a binary file containing the matrix multiplication
OpenCL kernels compiled for the AMD Evergreen architecture. It was generated by compiling
the MatrixMultiplication_Kernels.cl source file, which is not included in the package either.

84

First Executions
First, let us try to run the x86 program natively to obtain a list of its possible command-line options,
like this:
$./MatrixMultiplication -h

From the listed options, let us use -q to avoid a dump of big input matrices, and try to run the
OpenCL program with its default matrix sizes:

$./MatrixMultiplication -q

The output is an error message, telling that the program cannot be run natively on your machine,
because it was statically linked with the Multi2Sim OpenCL library. The result is that the first call to
an OpenCL function (here clGetPlatformIDs) causes the library to detect that it is not being run on top
of the simulator, and the program stops. Let us check out the functional simulation of the program
with m2s –evg-sim functional then:

$ m2s --evg-sim functional MatrixMultiplication -q

Now the program reaches a few more steps in its execution, but the simulation stops again with an
error message, notifying that the program called function clCreateProgramWithSource. This is an
OpenCL function used to compile OpenCL kernels’ source code at runtime, performing calls to
platform-dependent lower levels of the OpenCL stack. Currently, Multi2Sim does not support the
runtime compilation of OpenCL code, so we need the program to use the pre-compiled Evergreen
kernel binary provided in the package. Fortunately, the samples included in the APP software kit [13]
provide a command-line argument ––load <file>, that allows the user to specify an off-line compiled
binary. If this option is given, the program will use the function clCreateProgramWithBinary instead:

$ m2s --evg-sim functional MatrixMultiplication --load MatrixMultiplication_Kernels.bin -q

This should have been a correct execution for the default input matrix sizes of 64× 64. Since no
output matrix is shown in this case, not much can be really appreciated in this execution, but you can
add option -e to the sample command-line to make a self-test of the result matrix. When this option is
provided, the benchmark repeats the computation using x86 code, compares the result matrix with the
one obtained from the Evergreen kernel, and dumps Passed or Failed if they match or not, respectively.

The Evergreen GPU Statistics Summary
At the end of an simulation, Multi2Sim presents a summary of statistics in the standard error output
(see Section 1.5) that follows the INI file format. If an Evergreen functional or detailed simulation
took place, a section named [Evergreen] is included in this report, including the following variables:

• NDRangeCount. Total number of OpenCL ND-Ranges enqueued to the Evergreen GPU during this
simulation.

Additionally, the Evergreen model and its associated command-line options can cause the simulation
to end. This cause is recorded in variable SimEnd in section [General] of the statistics summary.
Besides those values presented in Section 1.5, the following additional values are possible for SimEnd:

• EvergreenMaxInst. The maximum number of Evergreen instructions has been reached, as
specified in command-line option ––evg-max-inst <num>. In functional simulation, this is the
maximum number of emulated instructions, as represented in section [Evergreen], variable

85

Instructions; in detailed simulation, it is the maximum number of committed instructions, as
shown in variable CommittedInstructions of the same section.

• EvergreenMaxCycles. The maximum number of Evergreen simulation cycles has been reached, as
specified in command-line option ––evg-max-cycles <num>.

• EvergreenMaxKernels. The maximum number of Evergreen kernels has been reached, as specified
in command-line option ––evg-max-kernels <num>.

The OpenCL Trace
The Multi2Sim OpenCL library interfaces in such a way with Multi2Sim, that allows it to perform a
detailed trace of all OpenCL calls performed by the program. Since version 3.1, Multi2Sim provides
the command-line option ––evg-debug-opencl <file> for this purpose, where <file> is the name of the
file where to dump the trace. If stdout is specified, the OpenCL trace will be dumped in the standard
output:

$ m2s --evg-sim functional --evg-debug-opencl stdout MatrixMultiplication \
--load MatrixMultiplication_Kernels.bin -q

clGetPlatformIDs
’libm2s-opencl’ version: 1.0.0
num_entries=1, platforms=0x8180af8, num_platforms=0x0, version=0x10000

clGetPlatformInfo
platform=0x10000, param_name=0x903, param_value_size=0x64,
param_value=0xfffdfd98, param_value_size_ret=0x0
[...]

Notice that this command-line option is added before the x86 program name, since it refers to a
simulator option, rather than an option for the benchmark. For each OpenCL function call, the
argument values are dumped, including some additional description of special arguments, such as flags
or strings. The format of this output is exactly the same as that used for dumping system calls
information in previous Multi2Sim versions, using the ––x86-debug-syscall option. A longer output can
be observed after the clCreateKernel call:

86

clCreateKernel
program=0x50007, kernel_name=0x8131e32, errcode_ret=0xfffdfd7c
kernel_name=’mmmKernel_local’

CAL ABI analyzer: parsing file ’/tmp/m2s.PT0RPS’
Parsing encoding dictionary

2 entries

[...]
Encoding dictionary entry 1:
d_machine = 0x9
d_type = 0x4
d_offset = 0x4d20
d_size = 0x2444
d_flags = 0x0

Encoding dictionary entry selected for loading: 1
pt_note: type=2 (ELF_NOTE_ATI_INPUTS), descsz=0
pt_note: type=10 (ELF_NOTE_ATI_CONSTANT_BUFFERS), descsz=16

Note including number and size of constant buffers (2 entries)
constant_buffer[1].size = 5 (vec4f constants)
constant_buffer[0].size = 9 (vec4f constants)

[...]

arg 0: ’matrixA’, pointer to float values (16-byte group) in global memory
arg 1: ’matrixB’, pointer to float values (16-byte group) in global memory
arg 2: ’matrixC’, pointer to float values (16-byte group) in global memory
arg 3: ’widthA’, value of type i32
arg 4: ’blockA’, pointer to float values (16-byte group) in local memory

kernel ’mmmKernel_local’ using 0 bytes local memory

When the call to clCreateKernel is performed by the program, the requested kernel is loaded from the
OpenCL kernel binary file MatrixMultiplication_Kernels.bin, which is a file using the Executable and
Linkable Format (ELF). In this case, the requested kernel is mmmKernel_local (notice that there can be
more than one kernel embedded in an Evergreen binary file). Multi2Sim uses its ELF file parser to
locate the kernel, and extracts all its information from the file.
The portion of the Evergreen binary associated with a kernel is in turn another embedded ELF file,
which includes the kernel code with different representations, such as LLVM, AMD IL, assembly
language, and most importantly, Evergreen instructions. Multi2Sim extracts the latter, jointly with
other kernel information, such as the number and type of arguments for the kernel, amount of local
memory used, etc.

The Evergreen ISA Trace
After the x86 program has finished setting up the OpenCL environment and the kernel input
parameters, it performs a call to clEnqueueNDRangeKernel. This call launches the execution of the
OpenCL kernel and transfers control to the GPU emulator, which is able to interpret AMD Evergreen
binary code [10]. Command-line option ––evg-debug-isa <file> can be used to obtain the trace of
Evergreen instructions executed by the GPU functional simulator, where <file> is the name of the file
where to dump the trace.
Let us try the execution of the matrix multiplication kernel again, this time dumping into the standard
output the Evergreen instruction trace. To make the problem simpler, let us change the default input
sizes of the matrices to 8× 4 and 4× 4 for MatrixA and MatrixB, respectively, and the local block size
to 1 single 4× 4 element. This problem size generates an ND-Range containing just 2 work-items.
Figure 6.10 shows a fragment of the ISA trace obtained for the execution of the MatrixMultiplication
kernel, including the command line typed by the user.

87

Figure 6.10: ISA trace excerpt for the MatrixMult OpenCL kernel emulation. The command line specified
generates an ND-Range with 2 work-items in total.

An Evergreen kernel is usually formed of a main control flow (CF) clause. A clause is a set of
instructions placed contiguously in memory. In a CF clause, assembly instructions are preceded by a
two-digit identifier (e.g., 00 ALU_PUSH_BEFORE). After this instructions, the pred (predicate) property of
the work-item is dumped. This property is a bitmap containing as many bits as number of threads,
where each bit is set to one if the corresponding thread is active. Active threads dump their arithmetic
computations into their destination registers, while inactive (or masked) threads do not. Predicate
bitmaps are used to handle control-flow divergence among threads within the same work-item. For
more on thread divergence see Section 6.2.
The ALU_PUSH_BEFORE CF instruction initiates a so-called ALU (arithmetic-logic-unit) clause. An ALU
clause is composed of ALU groups, which in turn are formed of ALU instructions. Each ALU group is
labeled with a number (0 and 1 above), and contains at the most five instructions (labeled as x, y, z,
w, and t). The ALU instruction label determines the hardware unit where the instruction will be
executed. Labels x through w represent the simple arithmetic-logic units, while label t stands for the
transcendental unit, used to execute complex operations. An ALU group can contain at the most one
transcendental operation. All ALU instructions within a group are executed in parallel, and they can
be viewed as a single VLIW instruction.
Also, a work-item execute ALU clauses in a SIMD (single-instruction multiple-data) fashion, that is, all
of them execute exactly the same instructions at a time. The instruction trace shows after each ALU
group the values written into each thread’s register. For example, i0:PV.x,R8.x<=(0x0,0f) means that
the ALU group was executed by thread 0, and the value 0x0 (equals to 0 interpreted a floating-point
number) is written into component x of both register R8 and PV, being PV a special register storing
always the result of the last operation on each component.

88

Chapter 7

The AMD Southern Islands GPU Model

In version 3.0, Multi2Sim introduced a model for the Evergreen family of AMD GPUs (Radeon HD
5000-series). The Northern Islands family of GPUs (Radeon HD 6000-series) did not change
significantly from the Evergreen family, with the most notable difference being a switch from 5-way
VLIW instructions to 4-way VLIW instructions. The most recent GPUs from AMD, the Southern
Islands family (Radeon HD 7000-series), constitute a dramatic change from the Evergreen and
Northern Islands GPUs. All levels of the GPU, from the ISA to the processing elements to the memory
system, have been redesigned. Thanks to continued collaboration with AMD, support for the Southern
Islands family of GPUs is introduced in Multi2Sim version 4.0.

7.1 Running an OpenCL Kernel on a Southern Islands GPU
The code execution on the GPU starts when the host program launches an OpenCL kernel. An
instance of a kernel is called an ND-Range, and is formed of work-groups, which in turn are comprised
of work-items (see Chapter 5). When the ND-Range is launched by the OpenCL driver, the
programming and execution models are mapped onto the Southern Islands GPU. Figure 7.1 shows a
high-level block diagram of the architecture of a Southern Islands GPU, matching the number of
components to the specific case of an HD Radeon 7970.
An ultra-threaded dispatcher acts as a work-group scheduler. It keeps consuming pending work-groups
from the running ND-Range, and assigns them to the compute units, as they become available. The
global memory scope accessible to the whole ND-Range corresponds to a physical global memory
hierarchy on the GPU, formed of caches and main memory (Figure 7.1a).

Figure 7.1: Simplified block diagram of the Radeon HD 7970 GPU.

89

Each compute unit runs one or more work-groups at a time. Since all work-items forming a
work-group run the same code, the compute unit combines sets of 64 work-items within a work-group
to run in a SIMD (single-instruction-multiple-data) fashion, executing the same instruction at a time
with the objective of simplifying the compute unit front-end. These sets of 64 work-items are known
as wavefronts.
Each compute unit features a wavefront scheduler and a set of 4 SIMD execution units. The former
keeps assigning individual wavefronts from running work-groups into the SIMD units, as they become
available. The local memory scope where work-items within a work-group can share information is
mapped a portion of the physical local memory also present in each compute unit (Figure 7.1b1).
Finally, each SIMD contains 16 lanes or stream cores, each of which executes one instruction for 4
work-items from the wavefront mapped to the SIMD unit in a time-multiplexed manner, using integer
and floating-point functional units. The work-item’s private memory is physically mapped to a portion
of the register file (Figure 7.1c). When the work-item uses more private memory than the register file
allows, register spills happen using privately allocated regions of global memory.

7.2 The Southern Islands Instruction Set Architecture (ISA)

Vector and Scalar Instructions
Most arithmetic operations on a GPU are performed by vector instructions. A vector instruction is
fetched once for an entire wavefront, and executed in a SIMD fashion by all its comprising 64
work-items. Each work-item runs it on a private copy of its data, so there are in fact 64 different
arithmetic operations effectively executing. Data that are private per work-item are stored in vector
registers.
With the Southern Islands series of GPUs, AMD integrated the concept of a scalar instruction. This
type of instruction is not only fetched in common for an entire wavefront, but also only executed once
for all work-items. A typical example for the occurrence of scalar instructions is the increment of an
iterator variable in a for loop. All work-items presumably initialize the variable to zero, and increment
it by one at the end of each iteration, keeping the same value of the variable at all times. Data that
are shared by all work-items in the wavefront are stored in scalar registers.
The OpenCL kernel compiler is responsible for detecting those scenarios where scalar instructions can
replace vector instructions. If successfully detected, the amount of work needed to execute such
instruction is reduced by a factor equal to the size of the wavefront. As shown later in this chapter,
scalar instructions run on dedicated execution units with a much lower hardware cost.

Southern Islands Assembly
The basic format and characteristics of the AMD Southern Islands instruction set are illustrated in the
assembly code excerpt in Figure 7.2. Scalar instructions use prefix s_, and vector instructions use v_.
Vector registers are represented as v0, v1, ..., v255, and scalar register are named s0, s1, ..., s103. All
registers are 32 bits. Those instructions performing 64-bit computations (both integer and
floating-point double-precision) use two consecutive registers to store 64-bit values.
The execution of some instructions implicitly modify the value of some scalar registers. Special
registers may also be handled directly, in the same way as general purpose registers. For example, one
of the most common special registers is the vector condition code vcc, which is a 64-bit mask

1Notice that this figure represents a very simplified version of a Southern Islands compute unit, aimed at illustrating the
mapping between OpenCL software entities to GPU hardware components. For example, execution units other than SIMD
units are omitted from the diagram. Later in the chapter we will explore the architecture of the compute unit in depth.

90

Figure 7.2: Example of Southern Islands Assembly.

representing the result of a vector comparison. Register vcc is actually composed of two scalar
registers. A comparison instruction could also specify any two consecutive scalar general-purpose
registers as the destination, instead of vcc.

Control Flow and Thread Divergence
Executing wavefronts on SIMD units causes the same machine instruction to be executed concurrently
by all work-items within the wavefront. This implementation simplifies hardware by allowing a common
instruction fetch engine to be shared among SIMD lanes, but becomes problematic when a conditional
branch instruction is resolved differently in any pair of work-items, causing thread divergence.
The Southern Islands ISA utilizes an execution mask to address work-item divergence. The execution
mask is a 64-bit mask, where each bit represents the active status of an individual work-item in the
wavefront. If a work-item is labeled as inactive, the result of any arithmetic computation performed in
its associated SIMD lane is ignored. The strategy to support work-item divergence consists in bringing
all work-items together through all possible execution paths, while keeping active only those
work-items whose conditional execution matches the currently fetched instruction flow. To support
nested branches and procedure calls, a series of execution masks must be stored to keep track of the
active state at each level.
The execution mask is a set of two consecutive special registers named exec. The execution mask is
managed by the compiler (i.e. in software), and nested execution masks are stored in scalar
general-purpose registers.

7.3 Functional Simulation
Following the simulation paradigm presented in Section 1.2, the execution of Southern Islands ISA on
Multi2Sim relies on a disassembler and an emulator. The disassembler provides information of each
new instruction to the emulator, which then updates the memory map and register files of the modeled
GPU for every executed instruction. The disassembler can also run as a stand-alone tool, as shown
next.

Disassembler
Southern Islands binaries can be disassembled in Multi2Sim using option ––si-disasm <file>. The
stand-alone disassembler provides an ISA dump that matches exactly the output provided by the AMD
compiler tools. Making these outputs be identical helps the validation process, in which Multi2Sim’s

91

ISA dump can be compared automatically character by character with AMD’s disassembler for all
supported benchmark kits.
The following command line makes the Southern Islands disassembler dump the ISA for all kernel
functions encoded in benchmark MatrixMultiplication of the APP SDK 2.5:

$ m2s --si-disasm MatrixMultiplication_Kernels.bin

**
** Disassembly for ’__kernel mmmKernel’
**

s_buffer_load_dwordx2 s[0:1], s[4:7], 0x04 // 00000000: C2400504
s_buffer_load_dwordx2 s[4:5], s[4:7], 0x18 // 00000004: C2420518
s_waitcnt lgkmcnt(0) // 00000008: BF8C007F
s_min_u32 s1, s1, 0x0000ffff // 0000000C: 8381FF01 0000FFFF
[...]

Emulation
The emulation of an x86 OpenCL host program sets up the Southern Islands emulator as a result of
the OpenCL API calls intercepted by the OpenCL runtime, such as clGetDeviceIDs, clCreateBuffer, or
clEnqueueWriteBuffer. The call that ultimately launches the Southern Islands emulator is
clEnqueueNDRangeKernel, which initializes the ND-Range, work-groups, wavefronts, and work-items, and
transfers control.
Southern Islands emulation is selected with option ––si-sim functional (default value). During
emulation, Multi2Sim enters a loop that runs one instruction for each wavefront in all work-groups of
the ND-Range at a time, until the whole ND-Range completes execution.

7.4 Architectural Simulation
Architectural simulation is activated with option ––si-sim detailed. The GPU configuration is passed
with option ––si-config <file>, where <file> follows the INI file format using the sections and
variables presented throughout this section. If no configuration file is passed, default parameters are
set up to resemble the Southern Islands HD Radeon 7970 GPU.

The Compute Unit
When timing simulation starts, the GPU ultra-threaded dispatcher starts assigning work-groups to
compute units as they stay or become available. At a given time during execution, one compute unit
can have zero, one, or more work-groups allocated to it. These work-groups are split into wavefronts,
for which the compute unit executes one instruction at a time. Each compute unit in the GPU is
replicated with an identical design, whose block diagram is represented in Figure 7.3.
The compute unit front-end fetches instructions from instruction memory for different wavefronts, and
sends them to the appropriate execution unit. The execution units present in a compute unit are the
scalar unit, the vector memory unit, the branch unit, the LDS unit (Local Data Store), and a set of
SIMD units (Single-Instruction Multiple-Data). The LDS unit interacts with local memory to service
its instructions, while the scalar and vector memory units can access global memory, shared by all
compute units. Each of the cited components are described in detail in the following sections.
In the GPU configuration file, section [Device] allows for the following variables:

92

Figure 7.3: Block diagram of a compute unit.

• Frequency. Working frequency in MHz for the Southern Islands GPU pipelines. All latencies
given in number of cycles in the Southern Islands configuration file are assumed within this
frequency domain. The default value is 1000 (= 1GHz).

• NumComputeUnits. Number of compute units in the GPU.

The Front-End
Figure 7.4 shows the architecture of the compute unit front-end. It is formed of a set of wavefront
pools, a fetch stage, a set of fetch buffers, and an issue stage. The number of wavefront pools and
fetch buffers match exactly the number of SIMD units. Its goal is fetching instructions from instruction
memory for different wavefronts, and sending these instructions to the corresponding execution unit.
When a work-group is initially mapped to a compute unit, its comprising wavefronts are assigned to
one of the available wavefront pools—all wavefronts in the work-group are always assigned to the
same wavefront pool. In the fetch stage, the oldest wavefront is selected from the pool, instruction
bytes are read from instruction memory at the wavefront’s current PC (program counter), and these
bytes are placed in the associated fetch buffer. In the next cycle, the fetch stage operates on the next
wavefront pool containing an available wavefront, following a round-robin order.
The issue stage consumes instructions from the fetch buffers, also in a round-robin order, and
distributes them among the execution units by transferring them into the corresponding issue buffer,
private to the execution unit. Arithmetic vector instructions are sent to the SIMD unit matching the
wavefront pool that the instruction was fetched from. Instructions of any other type are sent to single
shared instances of the scalar, branch, LDS, or vector-memory units.
The configuration parameters of the front-end are specified in a section named [FrontEnd] in the
Southern Islands configuration file. The allowed configuration variables are:

• FetchLatency. Number of cycles it takes to fetch an instruction from instruction memory.
• FetchWidth. Maximum number of instructions which can be fetched in a single cycle.
• FetchBufferSize. Size of the buffer holding instructions that have been fetched and are waiting
to be decoded.

• IssueLatency. Number of cycles it takes to issue a wavefront to its execution unit.

93

Figure 7.4: Block diagram of the pipeline front-end of a compute unit.

• IssueWidth. Maximum number of instructions which can be issued in a single cycle.
• MaxInstIssuedPerType. Maximum number of instructions of the same type that can be issued in a
single cycle.

The SIMD Unit
The SIMD unit is responsible for executing vector arithmetic-logic instructions. The model of the
SIMD unit is shown in Figure 7.5 with the following stages:

• Decode stage. The SIMD instruction is decoded.
• Read stage. The SIMD unit reads input operands from the register files.
• Execute stage. When the instruction operands are ready, the execution stage performs the

vector ALU operation on the SIMD lanes. The wavefront is split into sub-wavefronts, where
each sub-wavefront contains as many work-items as the number of lanes. Each lane accepts one
work-item every cycle. The number of sub-wavefronts is the quotient of the size of the
wavefront and the number of lanes per SIMD unit. Sub-wavefronts execution is pipelined within
a SIMD unit.
In the specific case of the HD Radeon 7970, there are 4 SIMD units (thus 4 wavefront pools), 16
lanes per SIMD unit, and 64 work-items per wavefront. When a SIMD instruction is issued, the
wavefront is split into 4 sub-wavefronts of 16 work-items each, making the functional units ready
after 4 cycles. This is exactly the time that the front-end’s issue stage needs to send a new
instruction to the SIMD unit upon a full utilization of wavefront pools, avoiding both contention
and wasted execution slots.

• Write stage. The SIMD unit writes the results to the vector register file.
• Complete stage. Once the instruction has completely finished execution, the wavefront is put
back into its original wavefront pool. This makes it again a candidate to be fetched by the
compute unit front-end.

The configuration parameters of the SIMD unit can be specified in a section named [SIMDUnit] in
the Southern Islands configuration file, with the following allowed variables:

94

Figure 7.5: Block diagram of the SIMD unit pipeline.

• NumSIMDLanes. Number of lanes per SIMD unit. This value must divide the wavefront size evenly.
• Width. Number of instructions processed by each stage of the pipeline per cycle.
• IssueBufferSize. Size of the issue buffer in number of instructions. An instruction is placed in

this buffer in the cycle when it begins to be issued, and taken away in the next cycle after it
finished to be decoded.

• DecodeLatency. Number of cycles it takes to decode an instruction.
• DecodeBufferSize. Size of the decode buffer in number of instructions. An instruction is placed in

this buffer in the cycle when it begins to be decoded, and taken away in the next cycle after it
finished to be read (processed by the read stage).

• ReadExecWriteLatency. Number of cycles it takes to read operands from the register files, execute
the SIMD arithmetic-logic operation, and write the results out to the register file for a single
subwavefront. The reason to combine these latencies in one single parameter is that a wavefront
is pipelined at the execute stage, and therefore can be present in all read, execute, and write
stages at the same time.
By default, this parameter takes a value of 8, which implies 4 sub-wavefronts executing an
arithmetic operation that takes 1 cycle to read source operands, 3 cycles of processing in the
functional units, and 1 cycle to write the result.

• ReadExecWriteBufferSize. Size of the buffer which holds instructions that have begun or
completed the read-exec-write process.

The Scalar Unit
The scalar unit is responsible for executing scalar arithmetic-logic and scalar memory instructions. The
model of the scalar unit is shown in Figure 7.6.

• Decode stage. The scalar instruction is decoded.
• Read stage. The instruction input operands are read from the scalar register file.

95

Figure 7.6: Block diagram of the scalar unit pipeline.

• Execute stage. This stage runs arithmetic-logic scalar operations in its internal pipelined
functional units.

• Memory stage. Scalar memory instructions access global memory in this stage.
• Write stage. The result of the scalar instruction is written to the scalar register file.
• Complete stage. The wavefront is placed back into its original wavefront pool.

The configuration parameters of the scalar unit are specified in a section named [ScalarUnit]. The
allowed configuration variables are:

• Width. Number of instructions per cycle processed by each stage of the pipeline.
• IssueBufferSize. Size of the issue buffer in number of instructions. The compute unit front-end
places a scalar instruction in this buffer in the same cycle as it begins to be issued, and the
decode stage takes it away in the next cycle after it finished to be decoded.

• DecodeLatency. Number of cycles it takes to decode an instruction.
• DecodeBufferSize. Size of the decode buffer in number of instructions. The decode stage places
an instruction in this buffer in the cycle when it begins to be decoded, and the read stage
removes it in the cycle after the operands are read.

• ReadLatency. Number of cycles it takes to read operands from the register files.
• ReadBufferSize. Size of the read buffer in number of instructions.
• ALULatency. Number of cycles it takes to execute a scalar arithmetic-logic instruction.
• ExecBufferSize. Size of the execute buffer in number of instructions.
• WriteLatency. Number of cycles it takes to write the resulting computation to the register file.
• WriteBufferSize. Size of the write buffer in number of instructions.

96

Figure 7.7: Block diagram of the branch unit pipeline.

The Branch Unit
The branch unit is responsible for executing certain control flow instructions. The model of the branch
unit is shown in Figure 7.7.

• Decode stage. The branch instruction is decoded.
• Read stage. The instruction input operands are read from the scalar register file.
• Execute stage. The decision is made whether the branch should be taken or not.
• Write stage. The branch unit writes the results to the scalar register file, and updates the
wavefront’s new program counter.

• Complete stage. The wavefront is placed back into its original wavefront pool.
The configuration parameters of the branch unit are specified in a section named [BranchUnit] in the
Southern Islands configuration file. The allowed configuration variables are:

• Width. Number of instructions processed by each stage of the pipeline per cycle.
• IssueBufferSize. Size of the issue buffer in number of instructions. The compute unit front-end
places a branch instruction in this buffer in the same cycle as it begins to be issued, and the
decode stage takes it away in the next cycle after it finished to be decoded.

• DecodeLatency. Number of cycles it takes to decode an instruction.
• DecodeBufferSize. Size of the decode buffer in number of instructions.
• ReadLatency. Number of cycles it takes to read operands from the register files.
• ReadBufferSize. Size of the read buffer in number of instructions.
• ExecLatency. Number of cycles it takes to execute a branch instruction.
• ExecBufferSize. Size of the execute buffer in number of instructions.
• WriteLatency. Number of cycles it takes to write the resulting computation to the register file.
• WriteBufferSize. Size of the write buffer in number of instructions.

97

Figure 7.8: Block diagram of the LDS unit pipeline.

The Local Data Share (LDS) Unit
The Local Data Share unit is responsible for handling all local memory instructions. The architecture
of the LDS unit is shown in Figure 7.8.

• Decode stage. The LDS instruction is decoded.
• Read stage. Input operands are read from the register files.
• Execute stage. The instruction accesses to local memory.
• Write stage. Data read from local memory are stored into the vector register file.
• Complete stage. The wavefront is placed back into its original wavefront pool.

The configuration parameters of the LDS unit are specified in a section named [LDSUnit]. The
allowed configuration variables are:

• Width. Number of instructions processed by each stage of the pipeline per cycle.
• IssueBufferSize. Size of the issue buffer in number of instructions. The compute unit front-end
places an LDS instruction in this buffer in the same cycle as it begins to be issued, and the
decode stage takes it away in the next cycle after it finished to be decoded.

• DecodeLatency. Number of cycles it takes to decode an instruction.
• DecodeBufferSize. Size of the decode buffer in number of instructions.
• ReadLatency. Number of cycles it takes to read operands from the register files.
• ReadBufferSize. Size of the read buffer in number of instructions.
• MaxInflightMem. Maximum number of in-flight LDS memory accesses at any time.
• WriteLatency. Number of cycles it takes to write the resulting computation to the register file.
• WriteBufferSize. Size of the write buffer in number of instructions.

98

Figure 7.9: Block diagram of the vector memory unit pipeline.

The Vector Memory Unit
The Vector Memory Unit is responsible for handling all vector global memory operations. The
architecture of the vector memory unit is shown in Figure 7.9.

• Decode stage. The vector memory instruction is decoded.
• Read stage. Input operands are read from the vector register file.
• Memory stage. The memory access is sent to the global memory hierarchy.
• Write stage. Data read from global memory is written into the vector register file.
• Complete stage. The wavefront is put back into its original wavefront pool.

The configuration parameters of the vector memory unit are specified in a section named
[VectorMemUnit]. The allowed configuration variables are:

• Width. Number of instructions processed by each stage of the pipeline per cycle.
• IssueBufferSize. Size of the issue buffer in number of instructions. The compute unit front-end
places a vector memory instruction in this buffer in the same cycle as it begins to be issued, and
the decode stage takes it away in the next cycle after it finished to be decoded.

• DecodeLatency. Number of cycles it takes to decode an instruction.
• DecodeBufferSize. Size of the decode buffer in number of instructions.
• ReadLatency. Number of cycles it takes to read operands from the register files.
• ReadBufferSize. Size of the read buffer in number of instructions.
• MaxInflightMem. Maximum number of in-flight vector memory accesses at any time.
• WriteLatency. Number of cycles it takes to write the resulting computation to the register file.
• WriteBufferSize. Size of the write buffer in number of instructions.

99

The Memory System
The state of an ND-Range in execution is represented by the private, local, and global memory images,
mapped to the register files, local physical memories, and global memory hierarchy, respectively.
Register files are modeled in Multi2Sim without contention, and their access happens with a fixed
latency. In a real system, multiple execution units could be accessing the same bank of the register file
at the same time, and thus experiment some contention. This contention is ignored in our model. For
now, each compute pipeline allows the register read and write latencies to be configured independently.
Local memories can be configured in section [LocalDataShare] of the Southern Islands configuration
file. In a real system, the LDS is a heavily banked design that supports intensive parallel accesses. For
now, it is modeled just as a regular cache structure (with no block mapping policy), with the following
configuration variables:

• Size. The LDS capacity per compute unit.
• AllocSize. The minimum amount of local memory allocated at a time for each work-group.
• BlockSize. Size of a local memory block. This parameter is used to keep track of access

coalescing: if multiple consecutive and pending accesses of the same kind target the same block,
they are combined into one single access.

• Latency. Number of cycles for data to return from LDS.
• Ports. Number of ports.

The global memory is structured as a cache hierarchy completely configurable by the user. A dedicated
configuration file is used for this purpose, passed to the simulator with the ––mem-config <file> option,
as discussed in Chapter 9. The statistics report of the accesses performed on each component of the
global memory hierarchy can be obtained at the end of a simulation by using option ––mem-report

<file>.

Sample Configuration File
The default configuration file for Southern Islands can be dumped using option
––si-dump-default-config <file>. An example of the full configuration file is shown in the following
listing.

100

[Device]
NumComputeUnits = 32

[ComputeUnit]
NumWavefrontPools = 4
NumVectorRegisters = 65536
NumScalarRegisters = 2048
MaxWorkGroupsPerWavefrontPool = 10
MaxWavefrontsPerWavefrontPool = 10

[FrontEnd]
FetchLatency = 5
FetchWidth = 4
FetchBufferSize = 10
IssueLatency = 1
IssueWidth = 5
MaxInstIssuedPerType = 1

[SIMDUnit]
NumSIMDLanes = 16
Width = 1
IssueBufferSize = 1
DecodeLatency = 1
DecodeBufferSize = 1
ReadExecWriteLatency = 8
ReadExecWriteBufferSize = 2

[ScalarUnit]
Width = 1
IssueBufferSize = 1
DecodeLatency = 1
DecodeBufferSize = 1
ReadLatency = 1
ReadBufferSize = 1
ALULatency = 1
ExecBufferSize = 16
WriteLatency = 1
WriteBufferSize = 1

[BranchUnit]
Width = 1
IssueBufferSize = 1
DecodeLatency = 1
DecodeBufferSize = 1
ReadLatency = 1
ReadBufferSize = 1
ExecLatency = 1
ExecBufferSize = 1
WriteLatency = 1
WriteBufferSize = 1

[LDSUnit]
Width = 1
IssueBufferSize = 1
DecodeLatency = 1
DecodeBufferSize = 1
ReadLatency = 1
ReadBufferSize = 1
MaxInflightMem = 32
WriteLatency = 1
WriteBufferSize = 1

[VectorMemUnit]
Width = 1
IssueBufferSize = 1
DecodeLatency = 1
DecodeBufferSize = 1
ReadLatency = 1
ReadBufferSize = 1
MaxInflightMem = 32
WriteLatency = 1
WriteBufferSize = 1

[LocalDataShare]
Size = 65536
AllocSize = 64
BlockSize = 64
Latency = 2
Ports = 2

7.5 Trying It Out
A quick walk-through is given here for the simulation of an OpenCL program targeting the Southern
Islands GPU model. After downloading, unpacking, and building Multi2Sim, you need to download the
package containing the pre-compiled OpenCL benchmarks in the Benchmarks section of the
Multi2Sim website [12]. The package is called m2s-bench-amdapp-2.5-si.tar.gz and can be unpacked
with the following command:

tar -xvfz m2s-bench-amdapp-2.5-si.tar.gz

One of the included benchmarks corresponds to the classical matrix multiplication algorithm for GPUs
(MatrixMultiplication directory), which is a pre-compiled version of the OpenCL sample included in
AMD’s Accelerated Parallel Processing (APP) software kit [13]. Two important files can be found for
this benchmark:

• MatrixMultiplication. This is a statically linked x86 executable file, embedding Multi2Sim’s
OpenCL runtime library. This executable has been generated from the MatrixMultiplication.cpp

and MatrixMultiplication.hpp sources, not included in the package.
• MatrixMultiplication_Kernels.bin. This is a binary file containing the matrix multiplication
OpenCL kernels compiled for the AMD Southern Islands architecture. It was generated by

101

compiling the MatrixMultiplication_Kernels.cl source file, not included in the package either.

First Execution
First, let us try to run the x86 program natively (without the simulator) to obtain a list of its possible
command-line options, like this:

$./MatrixMultiplication -h

From the listed options, let’s use -q to avoid a dump of big input matrices, and try to run the OpenCL
program with its default matrix sizes:

$./MatrixMultiplication -q

In the output for this execution, we can see first a warning from the OpenCL runtime detecting that
the benchmark is running natively. The runtime detects this situation by trying to communicate with
the Multi2Sim OpenCL driver through a specific system call code, but instead sending that system call
to the native Linux OS. The result is that Linux does not understand that system call, and returns an
error code to the runtime (see Chapter 5 for details).
As specified in the warning message, the only device that the OpenCL runtime exposes is the x86 CPU
device. However, the benchmark will be calling function clGetDeviceIDs using flag CL_DEVICE_GPU,
requesting identifiers of GPU devices. At this point, the driver returns an empty list, and the
benchmark finishes execution of an error message.
Let us run the benchmark now on the simulator. For the following examples, we assume that the
directory where the Multi2Sim executable resides ($M2S_ROOT/bin) is part of your $PATH environment
variable, and thus Multi2Sim can be run simply by typing m2s. The following command runs a
functional x86 simulation of the host program:

$ m2s MatrixMultiplication -q

Now the program reaches a few more steps in its execution, but the simulation stops again with an
error message saying that the program could not find the OpenCL kernel source. By default, APP
SDK benchmarks use function clCreateProgramWithSource as the first step to compiling and linking the
OpenCL kernel. Currently, Multi2Sim does not support runtime compilation of OpenCL code, so we
need the program to use the pre-compiled Southern Islands kernel binary provided in the package.
The samples included in the APP SDK provide a command-line argument, ––load <file>, that allows
the user to specify an off-line compiled binary. If this option is given, the program will use function
clCreateProgramWithBinary instead:

$ m2s MatrixMultiplication --load MatrixMultiplication_Kernels.bin -q

This executes the default input matrix sizes of 64× 64. Since no output matrix is shown in this case,
not much can be really appreciated in this execution. However, you can add option -e to the sample
command-line to make a self-test of the result matrix. When this option is provided, the benchmark
repeats the computation using x86 code, compares the result matrix with the one obtained from the
Southern Islands kernel, and dumps the string Passed or Failed if the matrices match or not,
respectively.
We can activate the Southern Islands timing simulator by adding option ––si-sim detailed as an
argument of the simulator, making sure that it is specified before the benchmark executable:

102

$ m2s --si-sim detailed MatrixMultiplication --load MatrixMultiplication_Kernels.bin -q

The Southern Islands Statistics Summary
At the end of a simulation, Multi2Sim presents a summary of statistics in the standard error output
(see Section 1.5) that follows the INI file format. If a Southern Islands functional or detailed
simulation took place, a section named [SouthernIslands] is included in this report. Besides the
standard variables presented earlier, the following variables are included for Southern Islands:

• NDRangeCount. Total number of OpenCL ND-Ranges enqueued to the Southern Islands GPU
during this simulation.

• WorkGroupCount. Total number of OpenCL work-groups executed, considering all ND-Ranges.
• BranchInstructions, LDSInstructions, ScalarALUInstructions, ScalarMemInstructions,

VectorALUInstructions, VectorMemInstructions. Global counters of different instructions types
executed in the GPU pipelines.

Additionally, the Southern Islands model and its associated command-line options can cause the
simulation to end. This cause is recorded in variable SimEnd in section [General] of the statistics
summary. Besides those values presented in Section 1.5, the following additional values are possible for
SimEnd:

• SouthernIslandsMaxInst. The maximum number of Southern Islands instructions has been
reached, as specified in command-line option ––si-max-inst <num>. In functional simulation, this
is the maximum number of emulated instructions, as represented in section [SouthernIslands],
variable Instructions. In detailed simulation, it is the maximum number of committed
instructions, as shown in variable CommittedInstructions of the same section.

• SouthernIslandsMaxCycles. The maximum number of Southern Islands simulation cycles has been
reached, as specified in command-line option ––si-max-cycles <num>.

• SouthernIslandsMaxKernels. The maximum number of Southern Islands kernels has been reached,
as specified in command-line option ––si-max-kernels <num>.

Full Statistics Report
The simulator option ––si-report <file> generates a report that includes a dump of the configuration
file, overall device statistics, and statistics for every compute unit in the device. The report also
follows a plain text INI file format.
The [Device] section provides the following statistics:

• NDRangeCount. Number of OpenCL kernels scheduled into the GPU with calls to
clEnqueueNDRangeKernel performed by the OpenCL host program.

• Instructions. Total number of Southern Islands machine instructions executed in the GPU. This
counter is incremented by one for each instruction executed by a whole wavefront, regardless of
the number of work-items forming it.

• ScalarALUInstructions. Total number of scalar arithmetic-logic instructions executed the device.
• ScalarMemInstructions. Total number of scalar memory instructions executed by the device.
• BranchInstructions. Total number of branch instructions executed by the device.

103

• VectorALUInstructions. Total number of vector arithmetic-logic (i.e., SIMD) instructions
executed by the device.

• LDSInstructions. Total number of LDS instructions executed by the device.
• VectorMemInstructions. Total number of vector memory instructions executed by the device.
• Cycles. Number of cycles the GPU was active. The device is considered active as long as any of
its compute units has a work-group mapped to it.

• InstructionsPerCycle. Quotient of Instructions and Cycles.
Each compute unit has an associated section named [ComputeUnit <id>], where <id> is a number
between 0 and NumComputeUnits – 1. The following variables can be found:

• WorkGroupCount. Number of work-groups mapped to the compute unit.
• Instructions. Total number of instructions executed by the compute unit. Note that for each
wavefront executing a SIMD instruction, this counter is incremented once. Therefore the
execution of 64 work-items on a SIMD only counts as one instruction.

• ScalarALUInstructions. Total number of scalar arithmetic-logic instructions executed by the
compute unit.

• ScalarMemInstructions. Total number of scalar memory instructions executed by the compute
unit.

• VectorALUInstructions. Total number of vector arithmetic-logic instructions executed by the
compute unit. For each wavefront executing an instruction, this counter is incremented once.

• VectorMemInstructions. Total number of vector memory instructions executed by the compute
unit. For each wavefront executing an instruction, this counter is incremented once.

• Cycles. Number of cycles that the compute unit had one or more work-groups mapped to it.
• InstructionsPerCycle. Quotient of Instructions and Cycles.

Within the compute unit section, statistics about LDS accesses are also provided. The statistics
generated for each LDS are as follows:

• Accesses. Total number of accesses performed by a compute unit.
• Reads, Writes. Number of reads performed by a compute unit.
• CoalescedReads, CoalescedWrites. Number of reads/writes that were coalesced with previous
accesses. These are requested accesses that never translated into an effective memory access
since they matched a block targeted by a previous access in the same cycle. See Chapter 9 for
more details on coalescing.

• EffectiveReads. Number of reads actually performed (= Reads − CoalescedReads).
• EffectiveWrites. Number of writes actually performed (= Writes − CoalescedWrites).

The Southern Islands ISA Trace
The Southern Islands emulator generates a trace of emulated instructions when the command-line
option ––si-debug-isa <file> is supplied. Let us try the execution of the matrix multiplication kernel
again, this time dumping into the standard output the Southern Islands instruction trace. To make the
problem simpler, let us change the default input sizes of the matrices to 8×8 for MatrixA and
MatrixB, respectively. This problem size generates an ND-Range containing a single 8×8 work-group.

104

$ m2s --si-sim functional --si-debug-isa isa-trace MatrixMultiplication \
--load MatrixMultiplication_Kernels.bin -q -x 8 -y 8 -z 8

The result in isa-trace is:
local_size = 64 (8,8,1)
global_size = 64 (8,8,1)
group_count = 1 (1,1,1)
wavefront_count = 1
wavefronts_per_work_group = 1
tid tid2 tid1 tid0 gid gid2 gid1 gid0 lid lid2 lid1 lid0 wavefront work-group

0 0 0 0 0 0 0 0 0 0 0 0 wf[i0-i63].0 wg[i0-i64].0
1 0 0 1 0 0 0 0 1 0 0 1 wf[i0-i63].1 wg[i0-i64].1
2 0 0 2 0 0 0 0 2 0 0 2 wf[i0-i63].2 wg[i0-i64].2

[...]
63 0 7 7 0 0 0 0 63 0 7 7 wf[i0-i63].63 wg[i0-i64].63

s_mov_b32 m0, 0x00008000
S124<=(32768)

s_buffer_load_dwordx2 s[0:1], s[4:7], 0x04
S0<=(8,1.12104e-44f) S1<=(8,1.12104e-44f)

s_waitcnt lgkmcnt(0)

v_cvt_f32_u32 v2, s0
t0: V2<=(8f) t1: V2<=(8f) t2: V2<=(8f) t3: V2<=(8f) t4: V2<=(8f)
t5: V2<=(8f) t6: V2<=(8f) t7: V2<=(8f) t8: V2<=(8f) t9: V2<=(8f)
t10: V2<=(8f) t11: V2<=(8f) t12: V2<=(8f) t13: V2<=(8f) t14: V2<=(8f) t15: V2<=(8f)
t16: V2<=(8f) t17: V2<=(8f) t18: V2<=(8f) t19: V2<=(8f) t20: V2<=(8f) t21: V2<=(8f)
t22: V2<=(8f) t23: V2<=(8f) t24: V2<=(8f) t25: V2<=(8f) t26: V2<=(8f) t27: V2<=(8f)
t28: V2<=(8f) t29: V2<=(8f) t30: V2<=(8f) t31: V2<=(8f) t32: V2<=(8f) t33: V2<=(8f)
t34: V2<=(8f)

[...]

At the beginning of the Southern Islands ISA trace, information about the setup of the ND-Range is
presented. The ND-Range and work-group sizes in each dimension are listed, along with the total
number of wavefronts and the number of wavefronts per work-group. A table is then given of each
work-item, and includes identification values for the three-dimensional work-item identifier (tid0, tid1,
tid2), group identifier (gid0, gid1, gid2), and local identifier (lid0, lid1, lid2). Each 3D identifier is
accompanied with a 1D equivalent value, uniquely identifying the work-item within the work-group,
the work-item within the ND-Range, and the work-group within the ND-Range.
After the initial setup, listings of emulated instructions appear. Each line corresponds to the emulation
of an instruction in a single wavefront. The assembly corresponding to the instruction is printed,
followed by a description of the updates to the device memory space. Each active work-item that
makes changes to its vector registers is shown under an instruction dump, using labels t0: V0<=(0),
t1: V0<=(0), etc. Values that are stored in registers may also be shown in different formats (integer or
float) if it is unknown how they should be interpreted.

105

Chapter 8

The NVIDIA Fermi GPU Model

In version 4.2, Multi2Sim introduces a model for the NVIDIA Fermi GPUs. Support for the Fermi
architecture is added using the 4-stage modular implementation presented in Section 1.2, and starting
with a disassembler and an emulator. This chapter describes the currently supported features.

8.1 The Fermi Disassembler
Fermi CUDA binaries (or cubin files) can be disassembled to Fermi ISA (also referred to as Streaming
Assembly, or SASS) with command-line option ––frm-disasm <file>. SASS is the native instruction set
architecture interpreted directly by NVIDIA hardware (as opposed to PTX, which is an intermediate
representation of GPU programs). The stand-alone disassembler provides an ISA dump that matches
exactly the output provided by the NVIDIA disassembler tool cuobjdump version 5.0. Making these
outputs be identical helps the validation process, by automatically comparing them character by
character for all supported benchmark kits.
As an example, the following command can be used to dump the ISA for the kernel function encoded
in benchmark vectorAdd of the CUDA SDK 5.0. A copy of the vectorAdd.cubin file is included in the
simulator package in directory samples/fermi/vectorAdd:

$ m2s --frm-disasm vectorAdd.cubin

; Multi2Sim 4.2 - A Simulation Framework for CPU-GPU Heterogeneous Computing
; Please use command ’m2s --help’ for a list of command-line options.
; Simulation alpha-numeric ID: nsaUE

code for sm_20
Function : _Z9vectorAddPKfS0_Pfi
/*0000*/ /*0x00005de428004404*/ MOV R1, c [0x1] [0x100];
/*0008*/ /*0x94001c042c000000*/ S2R R0, SR_CTAid_X;
/*0010*/ /*0x84009c042c000000*/ S2R R2, SR_Tid_X;
/*0018*/ /*0x20001ca320044000*/ IMAD R0, R0, c [0x0] [0x8], R2;
/*0020*/ /*0xb001dc231b0e4000*/ ISETP.GE.AND P0, pt, R0, c [0x0] [0x2c], pt;
/*0028*/ /*0xe00081e740000000*/ @P0 BRA.U 0x68;
/*0030*/ /*0x8000e04340004000*/ @!P0 ISCADD R3, R0, c [0x0] [0x20], 0x2;
/*0038*/ /*0x9000a04340004000*/ @!P0 ISCADD R2, R0, c [0x0] [0x24], 0x2;
/*0040*/ /*0xa000204340004000*/ @!P0 ISCADD R0, R0, c [0x0] [0x28], 0x2;
/*0048*/ /*0x0030e08580000000*/ @!P0 LD R3, [R3];
/*0050*/ /*0x0020a08580000000*/ @!P0 LD R2, [R2];
/*0058*/ /*0x0830a00050000000*/ @!P0 FADD R2, R3, R2;
/*0060*/ /*0x0000a08590000000*/ @!P0 ST [R0], R2;
/*0068*/ /*0x00001de780000000*/ EXIT;

106

8.2 The Fermi Emulator

The Multi2Sim CUDA Runtime
CUDA applications that run natively on computers rely on NVIDIA’s CUDA libraries to communicate
with GPU devices. In order to run them on Multi2Sim, we can re-link the x86 program binary using
Multi2Sim-specific libraries that implement all application’s external CUDA calls. Then, when the
guest program calls a library function, it will be seamlessly invoking Multi2Sim guest code, which can
communicate with internal simulator modules using system calls.
The CUDA execution infrastructure is organized in a modular manner, conceptually identical to the
OpenCL execution framework, as described in Section 5.2: The communication between the CPU
emulator running a host program and the GPU emulator running the device kernel happens through a
CUDA runtime library and a CUDA driver.

Emulation of the device kernel
The emulation of an x86 CUDA host program sets up the Fermi emulator as a result of the CUDA
Runtime/Driver API calls intercepted by the Multi2Sim CUDA runtime, such as cudaGetDevice,
cudaMalloc, cuDeviceGet, or cuMemAlloc. The call that ultimately launches the Fermi emulator is
cuLaunchKernel, which initializes the grid, thread blocks, warps, and threads, and transfers control.
During the emulation of a Fermi GPU kernel, the grid is executed sequentially, thread block by thread
block. Once a thread block is selected for emulation, it is split into warps (32 threads each).
Instructions are emulated in a SIMD fashion for the entire warp until completion—unless the warp hits
a barrier, in which case all warps have to reach that emulation point before continuing.
As an example, the following command is used to run benchmark vectorAdd from the CUDA SDK 5.0,
available in directory samples/fermi/vectorAdd in the Multi2Sim package.

107

$ m2s vectorAdd

; Multi2Sim 4.2 - A Simulation Framework for CPU-GPU Heterogeneous Computing
; Please use command ’m2s --help’ for a list of command-line options.
; Simulation alpha-numeric ID: EJOBA

[Vector addition of 31 elements]
Copy input data from the host memory to the CUDA device
CUDA kernel launch with 1 blocks of 32 threads
Copy output data from the CUDA device to the host memory
Result verification failed at element 0!

;
; Simulation Statistics Summary
;

[General]
RealTime = 0.08 [s]
SimEnd = ContextsFinished

[Fermi]
RealTime = 0.00 [s]
Instructions = 13
InstructionsPerSecond = 0

[x86]
RealTime = 0.08 [s]
Instructions = 134560
InstructionsPerSecond = 1670557
Contexts = 1
Memory = 9314304

Statistics Summary
When a Fermi emulation occurs during the execution of Multi2Sim, a new section [Fermi] shows up in
the final statistics summary dumped to stderr. This section includes only the standard statistics
described in Section 1.5, common for all architectures.

8.3 Compiling Your Own Sources
A CUDA program is composed of a host program (e.g., vectorAdd.cu) written in C or C++, and a
device kernel, usually integrated as a function within the C++ code with a special prefix __global__.
This forms a single source file that produces two ELF binary files: an x86 host program (vectorAdd)
and a Fermi device kernel (vectorAdd.cubin).
For compatibility with Multi2Sim, CUDA programs need to be compiled with the NVIDIA CUDA
compiler nvcc version 5.0. The following sequence of commands can be used to generate both the host
program and the device kernel binaries from a source file vectorAdd.cu, assuming that nvcc is available
in your system:

$ nvcc -o vectorAdd.cu.o -arch sm_20 -m32 -I. -c vectorAdd.cu
$ g++ -o vectorAdd -m32 vectorAdd.cu.o -L$M2S_ROOT/lib/.libs -static -lm2s-cuda

The first command compiles the source code vectorAdd.cu to the object code vectorAdd.cu.o. Option
-arch sm_20 specifies Fermi as the target architecture for the device kernel. Option -m32 makes the host

108

program compile for the 32-bit x86 target architecture (this option is necessary if you are using a
64-bit machine).
The second command links the object file generated with the static Multi2Sim CUDA library. Option
-L specifies the directory where the Multi2Sim CUDA runtime can be found, where $M2S_ROOT should be
replaced with the Multi2Sim source root—notice that the compilation of this runtime library happens
automatically when building Multi2Sim. Option -l specifies libm2s-cuda.a as the library to link with.
The commands above generate only one final binary, vectorAdd, which embeds the GPU kernel as one
of its ELF section. While Multi2Sim supports this feature, extracting the kernel binary from the x86
binary at runtime, it is also possible to generate a separate file with only the kernel binary,
vectorAdd.cubin with the following command:

$ nvcc -arch sm_20 -cubin vectorAdd.cu

8.4 Roadmap
The following extensions will be made in the near future on the existing Fermi architecture model:

• The emulator will be extended with support for more ISA instructions.
• An architectural simulation is currently in progress. The simulation accuracy will be evaluated
once completed.

• Full support for the CUDA SDK 5.0 benchmark suite.
• Support for other CUDA benchmarks (e.g., Parboil, Rodinia, PARSEC).

109

Chapter 9

The Memory Hierarchy

Multi2Sim provides a very flexible configuration of the memory hierarchy. Any number of cache levels
can be used, with any number of caches in each level. Caches can be unified or separate for data and
instructions, private or shared per CPU core, CPU thread, or GPU compute unit, and they can serve
specific physical address ranges. In this chapter, it is shown how the memory hierarchy is modeled,
configured and implemented in Multi2Sim, including caches, main memory, and interconnection
networks.

9.1 Memory Hierarchy Configuration
The configuration of the memory hierarchy is specified in a plain-text INI file, passed to the simulator
with option ––mem-config <file>. Each section in the file represents a component of the memory
hierarchy, formed of a set of cache modules, main memory modules, and interconnects.
Interconnects can be defined in two possible ways. The simplest way is using sections [Network <name>]

within the memory hierarchy configuration file. In this case, a default network topology is created,
consisting of a central switch with bidirectional links connected to each of the nodes (memory
modules) attached to the network. Networks defined within the memory configuration file are referred
to hereafter as internal networks.
Alternatively, interconnects can be defined externally in a network configuration file, passed to the
simulator with command-line option ––net-config <file>. This approach should be used to create
networks with custom topologies with full configuration flexibility (see Chapter 10). Networks defined
externally in the network configuration file are referred to as external networks1.

Sections and Variables
In the memory configuration file, section [General] is used to define global parameters affecting the
entire memory system. The possible variables included under this section are:

• Frequency. Frequency in MHz for the memory hierarchy, including cache memories and main
memory modules. Memory latencies given in number of cycles will be considered inside of this
frequency domain. The default value is 1000 (= 1GHz).

• PageSize. Memory page size. Virtual addresses are translated into new physical addresses in
ascending order at the granularity of the page size.

1The names internal and external networks do not specify any quality of the modeled network. They only refer to
the configuration file where the network was defined, i.e., whether it was internally in the memory configuration file, or
externally in the network configuration file.

110

Section [Module <name>] defines a generic memory module. This section is used to declare both caches
and main memory modules accessible from CPU cores or GPU compute units. These are the possible
variables in this section:

• Type. Type of the memory module, where possible values are Cache or MainMemory. From the
simulation point of view, the difference between a cache and a main memory module is that the
former contains only a subset of the data located at the memory locations it serves.

• Geometry. Cache geometry, defined in a separate section of type [Geometry <geo>]. This variable
is required when Type is set to Cache.

• LowNetwork. Network connecting the module with other lower-level modules, i.e., modules closer
to main memory. This variable is mandatory for caches, and should not appear for main memory
modules. Value <net> can refer to an internal network defined in a [Network <net>] section, or to
an external network defined in the network configuration file.

• LowNetworkNode. If LowNetwork points to an external network, this variable should specify the
network node that the module is mapped to. For internal networks, this variable should be
omitted.

• HighNetwork. Network connecting the module with other higher-level modules, i.e., modules
closer to CPU cores or GPU compute units. For modules that are directly accessible by
CPU/GPU requesting devices, this variable should be omitted.

• HighNetworkNode. If HighNetwork points to an external network, node that the module is mapped
to.

• LowModules. List of lower-level modules, separated by spaces. For a cache module, this variable is
required. If there is only one lower-level module, it serves the entire address space for the current
module. If there are several lower-level modules, each should serve a disjoint subset of the
physical address space. This variable should be omitted for main memory modules.

• BlockSize. Block size in bytes. This variable is required for a main memory module. It should be
omitted for a cache module (in this case, the block size is specified in the corresponding cache
geometry section).

• Latency. Memory access latency in number of cycles. This variable is required for a main
memory module, and should be omitted for a cache module (the access latency is specified in
the corresponding cache geometry section in this case).

• Ports. Number of read/write ports. This variable is only allowed for a main memory module.
The number of ports for a cache is specified in a separate cache geometry section.

• DirectorySize. Size of the directory in number of blocks. The size of a directory limits the
number of different blocks that can reside in upper-level caches. If a cache requests a new block
from main memory, and its directory is full, a previous block must be evicted from the directory,
and all its occurrences in the memory hierarchy need to be first invalidated. This variable is only
allowed for a main memory module.

• DirectoryAssoc. Directory associativity in number of ways. This variable is only allowed for a
main memory module.

• AddressRange. Physical address range served by the module. If not specified, the entire address
space is served by the module. There are two possible ways of defining the address space, using
alternative syntax:

– BOUNDS <low> <high>

111

This format is used for ranged addressing. The module serves every address between low

and high. The value in <low> must be a multiple of the module block size, and the value in
<high> must be a multiple of the block size minus 1. The default value for AddressRange is
BOUNDS 0x0 0xffffffff.

– ADDR DIV <div> MOD <mod> EQ <eq>

This format is used for interleaved addressing. The address space is split between different
modules in an interleaved manner. If dividing an address by <div> and modulo <mod> makes
it equal to <eq>, it is served by this module. The value of <div> must be a multiple of the
block size. When a module serves only a subset of the address space, the user must make
sure that the rest of the modules at the same level serve the remaining address space.

Section [CacheGeometry <geo>] defines a geometry for a cache. Caches can then be instantiated with
[Module <name>] sections, and point to the geometry defined here. These are the possible variables:

• Sets. Number of sets in the cache.
• Assoc. Cache associativity. The total number of blocks contained in the cache is given by the
product Sets × Assoc.

• BlockSize. Size of a cache block in bytes. The total size of the cache in bytes is given by the
product Sets × Assoc × BlockSize.

• Latency. Hit latency for a cache in number of cycles.
• Policy. Block replacement policy. Possible values are LRU, FIFO, and Random.
• MSHR. Miss status holding register (MSHR) size in number of entries. This value determines the
maximum number of accesses that can be in flight for the cache, including the time since the
access request is received, until a potential miss is resolved.

• Ports. Number of ports. The number of ports in a cache limits the number of concurrent access
hits. If an access is a miss, it remains in the MSHR while it is resolved, but releases the cache
port.

Section [Network <net>] defines an internal interconnect, formed of a single switch connecting all
modules pointing to the network. For every module in the network, a bidirectional link is created
automatically between the module and the switch, together with the suitable input/output buffers in
the switch and the module.

• DefaultInputBufferSize. Size of input buffers for end nodes (memory modules) and switch.
• DefaultOutputBufferSize. Size of output buffers for end nodes and switch.
• DefaultBandwidth. Bandwidth for links and switch crossbar in number of bytes per cycle. See

Chapter 10 for a description of the modeled architecture for switches, buffers, and links.
Section [Entry <name>] creates an entry into the memory system. An entry is a connection between a
CPU or GPU requesting device and a module in the memory system.

• Type. Type of processing node that this entry refers to. Possible values are CPU and GPU.
• Core. CPU core identifier. This is a value between 0 and the number of cores minus 1, as defined
in the CPU configuration file (option ––x86-config <file>). This variable should be omitted for
GPU entries.

• Thread. CPU thread identifier. Value between 0 and the number of threads per core minus 1, as
specified in the CPU configuration file. Omitted for GPU entries.

112

• ComputeUnit: GPU compute unit identifier. Value between 0 and the number of compute units
minus 1, as defined in the active GPU’s configuration file (options ––evg-config <file>,
––si-config, etc.). This variable should be omitted for CPU entries.

• DataModule: Module in the memory system that will serve as an entry to a CPU core/thread
when reading/writing program data. The value in <mod> corresponds to a module defined in a
section [Module <mod>]. Omitted for GPU entries.

• InstModule: Module serving as an entry to a CPU core/thread when fetching program
instructions. Omitted for GPU entries.

• Module: Module serving as an entry to a GPU compute unit when reading/writing program data
in the global memory scope. Omitted for CPU entries.

Memory Hierarchy Commands
In the memory hierarchy configuration file, section [Commands] can be used to initialize parts of the
state of the memory hierarchy, as well as to perform sanity checks on its final state. This section of
the configuration file is only used for debugging purposes in the verification process of the memory
coherence protocol implementation, and should not be used for standard simulations based on
benchmarks execution. Each variables in section [Commands] represents one command. Commands are
represented with consecutive and bracketed indexes starting at 0:

[Commands]
Command[0] = SetBlock mod-l1-0 16 1 0x1000 E
Command[1] = Access mod-l1-0 1 LOAD 0x1000
Command[2] = CheckBlock mod-l1-0 0 0 0x0 I
Command[3] = SetOwner mod-l2-0 1 0 0 mod-il1-0
...

Each command is a string formed of a set of tokens separated with spaces. The possible commands
can be split into three different categories, depending on whether they initialize state, schedule events,
or perform sanity checks. The following commands perform state initialization:

• SetBlock <mod> <set> <way> <tag> <state>. Set the initial tag and state of a block in a cache
memory or in the directory of a main memory module. Token mod is the name of the memory
module, as defined in a previous section [Module <name>] of the memory hierarchy configuration
file. Tokens set and way identify the block in the memory module. Token tag is the initial tag for
the block, given as an hexadecimal memory address. The user should make sure that the
memory address represented by tag is actually served by module mod, maps to set set, and is a
multiple of the module’s block size. Finally, state sets the initial state of the block, given as a
capital initial letter (N, M, O, E, S, or I).

• SetOwner <mod> <set> <way> <sub_block> <owner>. Set the owner of block at {set, way} in the
directory of memory module mod. Token sub_block specifies the sub-block index when there are
higher-level modules with smaller block sizes (0 if there are no sub-blocks). Finally, owner sets
the initial owner of the block among any of the higher-level caches, as set up in the memory
hierarchy configuration file. Token owner is a module name, as defined in a previous section
[Module <name>], or None if the sub-block should have no owner.

• SetSharers <mod> <set> <way> <sub_block> <sharer1> [<sharer2> [<sharer3> ...]]. Set the
sharers bit-map of block {set, way} in the directory of module mod. Each of the given sharers
corresponds to a bit in the sharers bit-map that will be initially set. Each sharer is a higher-level
module, referred to by the name assigned in a previous section [Module <name>]. The list of
sharers can be replaced by None if the sub-block should have no sharer.

113

The following commands schedule events on the memory hierarchy:
• Access <mod> <cycle> <type> <addr>. Perform an access on memory module mod (must be an L1

cache) of type type at address addr. Token type can be Load, Store, or NCStore. The access will
happen in cycle cycle, where 1 is the first simulation cycle.

Finally, the following commands perform sanity checks at the end of the simulation:
• CheckBlock <mod> <set> <way> <tag> <state>. At the end of the simulation, check that block at

{set, way} in module mod contains tag tag in state state. If it does, the simulation finishes
successfully. Otherwise, Multi2Sim reports and error and terminates with exit code 1. The exit
code can be checked by scripts to analyze the sanity check results. The meaning and syntax of
each token is the same as in command SetBlock.

• CheckOwner <mod> <set> <way> <sub_block> <owner>. At the end of the simulation, check that the
directory entry contained in sub-block sub_block of block at {set, way} in module mod has
higher-level module owner as an owner. The owner can also be set to None. The syntax is the
same as in command SetOwner.

• CheckSharers <mod> <set> <way> <sub_block> <sharer1> [<sharer2> [<sharer3> ...]]. At the end
of the simulation, check that the directory entry contained in sub-block sub_block of block at
{set, way} in module mod has a sharers bit-map where only those bits associated with sharer1,
sharer2, etc. are set to 1. The list of sharers can also be replaced None to specify no sharer. The
syntax is the same as in command SetSharers.

9.2 Examples of Memory Hierarchy Configurations
Some examples are shown next to help understand the format of the memory hierarchy configuration
file. The presented configuration files can be found under the samples/memory directory of the
Multi2Sim distribution package (starting at version 4.0.1). Each subdirectory contains the CPU, GPU,
memory, and network configuration files needed to reproduce examples, as well as a README file showing
the command line to run.

Cache Geometries
Sections describing cache geometries are needed in the memory configuration files (option
––mem-config) of all examples. For the sake of brevity, these sections are shown in the following listing,
and omitted from all memory hierarchy configuration files presented later. Geometries labeled geo-l1

and geo-l2 will be used throughout for L1 and L2 caches, respectively.

[CacheGeometry geo-l1]
Sets = 128
Assoc = 2
BlockSize = 256
Latency = 2
Policy = LRU
Ports = 2

[CacheGeometry geo-l2]
Sets = 512
Assoc = 4
BlockSize = 256
Latency = 20
Policy = LRU
Ports = 4

Example: Multicore Processor using Internal Networks
Figure 9.1 presents an example of a multicore processor with three cores. To start from this processor
model, a CPU configuration file must be initially created with the following contents, passed to the
simulator with option ––x86-config <file>:

114

Figure 9.1: Multicore processor using internal networks.

[General]
Cores = 3

The memory hierarchy for this example shows a private L1 cache per core, unified for data and
instruction requests. There are two L2 caches shared between all three cores. The following listing
shows the memory hierarchy configuration file, where geometries geo-l1 and geo-l2 are reused for L1
and L2 caches, respectively:

115

[Module mod-l1-0]
Type = Cache
Geometry = geo-l1
LowNetwork = net-l1-l2
LowModules = mod-l2-0 mod-l2-1

[Module mod-l1-1]
Type = Cache
Geometry = geo-l1
LowNetwork = net-l1-l2
LowModules = mod-l2-0 mod-l2-1

[Module mod-l1-2]
Type = Cache
Geometry = geo-l1
LowNetwork = net-l1-l2
LowModules = mod-l2-0 mod-l2-1

[Module mod-l2-0]
Type = Cache
Geometry = geo-l2
HighNetwork = net-l1-l2
LowNetwork = net-l2-mm
LowModules = mod-l2-mm
AddressRange = BOUNDS 0x00000000 0x7FFFFFFF

[Network net-l1-l2]
DefaultInputBufferSize = 1024
DefaultOutputBufferSize = 1024
DefaultBandwidth = 256

[Network net-l2-mm]
DefaultInputBufferSize = 1024
DefaultOutputBufferSize = 1024
DefaultBandwidth = 256

[Module mod-l2-1]
Type = Cache
Geometry = geo-l2
HighNetwork = net-l1-l2
LowNetwork = net-l2-mm
LowModules = mod-l2-mm
AddressRange = BOUNDS 0x80000000 0xFFFFFFFF

[Module mod-mm]
Type = MainMemory
BlockSize = 256
Latency = 200
HighNetwork = net-l2-mm

[Entry core-0]
Arch = x86
Core = 0
Thread = 0
DataModule = mod-l1-0
InstModule = mod-l1-0

[Entry core-1]
Arch = x86
Core = 1
Thread = 0
DataModule = mod-l1-1
InstModule = mod-l1-1

[Entry core-2]
Arch = x86
Core = 2
Thread = 0
DataModule = mod-l1-2
InstModule = mod-l1-2

Additionally, two internal interconnection networks are used, one connecting L1 caches with L2 caches,
defined in section [net-l1-l2], and another connecting L2 caches with main memory, defined in
section [net-l2-mm]. The processor cores are connected to the L1 caches using the [Entry <name>]

sections. Memory modules are connected to lower networks (i.e., networks closer to main memory)
using the LowNetwork variable, and to higher networks (i.e., closer to the CPU) using the HighNetwork

variable. Variable LowNetworkModules is used to specify which lower memory modules serve misses on a
cache. For example, cache mod-l1-0 specifies two lower modules (mod-l2-0 and mod-l2-1) to be
accessed upon a miss, each of which provides a different subset of the entire physical address space.

Example: Multicore with External Network
In this example, the default L1-to-L2 network configuration provided in the previous 3-core processor
example is replaced with a custom interconnect (external network), declared in a separate network
configuration file. The block diagram for this example is shown in Figure 9.2. Reusing the cache
geometries defined in the previous example, the listing below shows the contents of the memory
hierarchy configuration file:

116

Figure 9.2: Multicore with external networks.

[Module mod-l1-0]
Type = Cache
Geometry = geo-l1
LowNetwork = net0
LowNetworkNode = n0
LowModules = mod-l2-0 mod-l2-1

[Module mod-l1-1]
Type = Cache
Geometry = geo-l1
LowNetwork = net0
LowNetworkNode = n1
LowModules = mod-l2-0 mod-l2-1

[Module mod-l1-2]
Type = Cache
Geometry = geo-l1
LowNetwork = net0
LowNetworkNode = n2
LowModules = mod-l2-0 mod-l2-1

[Module mod-l2-0]
Type = Cache
Geometry = geo-l2
HighNetwork = net0
HighNetworkNode = n3
LowNetwork = net-l2-mm
AddressRange = BOUNDS 0x00000000 0x7FFFFFFF
LowModules = mod-mm

[Module mod-l2-1]
Type = Cache
Geometry = geo-l2
HighNetwork = net0
HighNetworkNode = n4
LowNetwork = net-l2-mm
AddressRange = BOUNDS 0x80000000 0xFFFFFFFF
LowModules = mod-mm

[Module mod-mm]
Type = MainMemory
BlockSize = 256
Latency = 100
HighNetwork = net-l2-mm

[Network net-l2-mm]
DefaultInputBufferSize = 1024
DefaultOutputBufferSize = 1024
DefaultBandwidth = 256

[Entry core-0]
Arch = x86
Core = 0
Thread = 0
DataModule = mod-l1-0
InstModule = mod-l1-0

[Entry core-1]
Arch = x86
Core = 1
Thread = 0
DataModule = mod-l1-1
InstModule = mod-l1-1

[Entry core-2]
Arch = x86
Core = 2
Thread = 0
DataModule = mod-l1-2
InstModule = mod-l1-2

The three [Entry <name>] sections define the entry points to the memory hierarchy, i.e., the connections
between the CPU cores and their associated L1 caches. Network net-l2-mm is defined within the

117

memory hierarchy configuration file, so it is automatically created with a default topology, using a
single switch and one bidirectional link per node. On the contrary, network net-0 referenced in section
[Module mod-l1-0] is not defined in the same file. Thus, the simulator will expect to find this network
definition in the network configuration file passed with option ––net-config <file>, listed below.
The L1-to-L2 network consists of two switches and five end nodes, each associated with an L1 or L2
cache module. The nodes associated with L1 caches are connected to one switch (sw0) and the L2
nodes are connected to another switch (sw1). Three bidirectional links are defined between nodes
n0...n2 and switch sw0, and two more bidirectional links are created between nodes n3...n4 and switch
sw1. Finally, an additional bidirectional link is defined between the two switches sw0 and sw1. The
following code shows the contents of the network configuration file:

[Network.net0]
DefaultInputBufferSize = 1024
DefaultOutputBufferSize = 1024
DefaultBandwidth = 256

[Network.net0.Node.sw0]
Type = Switch

[Network.net0.Node.n0]
Type = EndNode

[Network.net0.Node.n1]
Type = EndNode

[Network.net0.Node.n2]
Type = EndNode

[Network.net0.Node.sw1]
Type = Switch

[Network.net0.Node.n3]
Type = EndNode

[Network.net0.Node.n4]
Type = EndNode

[Network.net0.Link.sw0-n0]
Source = sw0
Dest = n0
Type = Bidirectional

[Network.net0.Link.sw0-n1]
Source = sw0
Dest = n1
Type = Bidirectional

[Network.net0.Link.sw0-n2]
Source = sw0
Dest = n2
Type = Bidirectional

[Network.net0.Link.sw0-sw1]
Source = sw0
Dest = sw1
Type = Bidirectional

[Network.net0.Link.sw1-n3]
Source = sw1
Dest = n3
Type = Bidirectional

[Network.net0.Link.sw1-n4]
Source = sw1
Dest = n4
Type = Bidirectional

When an external network is given, memory components defined in the memory hierarchy
configuration file connected to that network need to specify the network node that they are mapped
to. For example, notice in the listings above how memory module mod-l1-0 (defined in section [Module

mod-l1-0] of the memory hierarchy configuration file) is connected to external network net-0 (variable
LowNetwork) and is mapped with node n0 of that network (variable LowNetworkNode). Node n0 is a
member of network net-0 defined in section [Network.net-0.Node.n0] of the network configuration file.

Example: Multicore with Ring Network
A more complex example is represented in Figure 9.3, using a 4-core processor. The cores have private
L1 data caches, and a common L1 instruction cache is shared every two cores. The [Entry <name>]

sections in the memory hierarchy configuration file are responsible for doing the association between
CPU cores and data or instruction caches, by assigning values to the InstructionModule and DataModule

variables. The network declared between the L1 and L2 is an internal network with default topology,
while the network between the L2 caches and the main memory modules is an external network with
custom topology.
In this example, the two L2 caches serve independent sets of higher-level (L1) caches, so each L2 can

118

Figure 9.3: Multicore with ring network.

serve the entire address space. Thus, the AddressRange variable is not given for the L2 modules. Main
memory is configured using a banked organization with four banks, using the alternative syntax for the
value of AddressRange in the main memory modules. The memory hierarchy configuration file is listed
next.

119

[Module mod-l1-0]
Type = Cache
Geometry = geo-d-l1
LowNetwork = net-l1-l2-0
LowModules = mod-l2-0

[Module mod-l1-1]
Type = Cache
Geometry = geo-d-l1
LowNetwork = net-l1-l2-0
LowModules = mod-l2-0

[Module mod-l1-2]
Type = Cache
Geometry = geo-d-l1
LowNetwork = net-l1-l2-1
LowModules = mod-l2-1

[Module mod-l1-3]
Type = Cache
Geometry = geo-d-l1
LowNetwork = net-l1-l2-1
LowModules = mod-l2-1

[Module mod-il1-0]
Type = Cache
Geometry = geo-i-l1
LowNetwork = net-l1-l2-0
LowModules = mod-l2-0

[Module mod-il1-1]
Type = Cache
Geometry = geo-i-l1
LowNetwork = net-l1-l2-1
LowModules = mod-l2-1

[Network net-l1-l2-0]
DefaultInputBufferSize = 1024
DefaultOutputBufferSize = 1024
DefaultBandwidth = 256

[Network net-l1-l2-1]
DefaultInputBufferSize = 1024
DefaultOutputBufferSize = 1024
DefaultBandwidth = 256

[Module mod-l2-0]
Type = Cache
Geometry = geo-l2
HighNetwork = net-l1-l2-0
LowNetwork = net0
LowNetworkNode = n0
LowModules = mod-mm-0 mod-mm-1 \

mod-mm-2 mod-mm-3

[Module mod-l2-1]
Type = Cache
Geometry = geo-l2
HighNetwork = net-l1-l2-1
LowNetwork = net0
LowNetworkNode = n1
LowModules = mod-mm-0 mod-mm-1 \

mod-mm-2 mod-mm-3

[Module mod-mm-1]
Type = MainMemory
BlockSize = 256
Latency = 100
HighNetwork = net0
HighNetworkNode = n3
AddressRange = ADDR DIV 256 \

MOD 4 EQ 1

[Module mod-mm-2]
Type = MainMemory
BlockSize = 256
Latency = 100
HighNetwork = net0
HighNetworkNode = n4
AddressRange = ADDR DIV 256 \

MOD 4 EQ 2

[Module mod-mm-3]
Type = MainMemory
BlockSize = 256
Latency = 100
HighNetwork = net0
HighNetworkNode = n5
AddressRange = ADDR DIV 256 \

MOD 4 EQ 3

[Entry core-0]
Arch = x86
Core = 0
Thread = 0
DataModule = mod-l1-0
InstModule = mod-il1-0

[Entry core-1]
Arch = x86
Core = 1
Thread = 0
DataModule = mod-l1-1
InstModule = mod-il1-0

[Entry core-2]
Arch = x86
Core = 2
Thread = 0
DataModule = mod-l1-2
InstModule = mod-il1-1

[Entry core-3]
Arch = x86
Core = 3
Thread = 0
DataModule = mod-l1-3
InstModule = mod-il1-1

The ring network net0 is defined to connect L2 cache modules with main memory modules. Two end
nodes required for the L2 cache modules, and four additional end nodes are associated with the four
main memory modules. Four switches are connected forming a ring, where each of them is connected
to one main memory module, and only two of them are connected to L2 caches. The listing below
shows the contents of the network configuration file.

120

[Network.net0]
DefaultInputBufferSize = 1024
DefaultOutputBufferSize = 1024
DefaultBandwidth = 256

[Network.net0.Node.sw0]
Type = Switch

[Network.net0.Node.sw1]
Type = Switch

[Network.net0.Node.sw2]
Type = Switch

[Network.net0.Node.sw3]
Type = Switch

[Network.net0.Node.n0]
Type = EndNode

[Network.net0.Node.n1]
Type = EndNode

[Network.net0.Node.n2]
Type = EndNode

[Network.net0.Node.n3]
Type = EndNode

[Network.net0.Node.n4]
Type = EndNode

[Network.net0.Node.n5]
Type = EndNode

[Network.net0.Link.sw0-n2]
Source = sw0
Dest = n2
Type = Bidirectional

[Network.net0.Link.sw1-n3]
Source = sw1
Dest = n3
Type = Bidirectional

[Network.net0.Link.sw2-n4]
Source = sw2
Dest = n4
Type = Bidirectional

[Network.net0.Link.sw3-n5]
Source = sw3
Dest = n5
Type = Bidirectional

[Network.net0.Link.sw1-n0]
Source = sw1
Dest = n0
Type = Bidirectional

[Network.net0.Link.sw2-n1]
Source = sw2
Dest = n1
Type = Bidirectional

[Network.net0.Link.sw0-sw1]
Source = sw0
Dest = sw1
Type = Bidirectional

[Network.net0.Link.sw1-sw2]
Source = sw1
Dest = sw2
Type = Bidirectional

[Network.net0.Link.sw2-sw3]
Source = sw2
Dest = sw3
Type = Bidirectional

[Network.net0.Link.sw3-sw0]
Source = sw3
Dest = sw0
Type = Bidirectional

Notice that a ring topology contains contains a cycle of network links, which can cause deadlocks
when routing packets between input and output buffers or intermediate switches and end nodes. See
Chapter 10 for more details regarding routing tables and deadlocks.

Heterogeneous System with CPU and GPU cores

Figure 9.4: Heterogeneous system with one multithreaded x86 CPU core and four Evergreen GPU
compute units.

121

This example presents an heterogeneous system with one x86 CPU core and four Evergreen GPU
compute units, as represented in Figure 9.4. It also illustrates how each thread of the multi-threaded
x86 core can have its own entry into the memory hierarchy through a private L1. The Evergreen
compute units share one single L1 cache. The [Entry <name>] sections in the memory hierarchy
configuration file are responsible for these associations. Main memory modules and global memory
modules are declared in a similar manner for both the CPU and the GPU, using [Module <name>]

sections where variable Type is equal to to MainMemory. The following listing shows the memory
hierarchy configuration file.

[Module mod-gpu-l1-0]
Type = Cache
Geometry = geo-gpu-l1
LowNetwork = net-gpu-l1-l2
LowModules = mod-gpu-l2-0

[Module mod-gpu-l1-1]
Type = Cache
Geometry = geo-gpu-l1
LowNetwork = net-gpu-l1-l2
LowModules = mod-gpu-l2-0

[Module mod-gpu-l2-0]
Type = Cache
Geometry = geo-gpu-l2
HighNetwork = net-gpu-l1-l2
LowNetwork = net-gpu-l2-mm
LowModules = mod-gpu-mm

[Network net-gpu-l1-l2]
DefaultInputBufferSize = 1024
DefaultOutputBufferSize = 1024
DefaultBandwidth = 256

[Network net-gpu-l2-mm]
DefaultInputBufferSize = 1024
DefaultOutputBufferSize = 1024
DefaultBandwidth = 256

[Module mod-gpu-mm]
Type = MainMemory
BlockSize = 256
Latency = 100
HighNetwork = net-gpu-l2-mm

[Entry gpu-cu-0]
Arch = Evergreen
ComputeUnit = 0
Module = mod-gpu-l1-0

[Entry gpu-cu-1]
Arch = Evergreen
ComputeUnit = 1
Module = mod-gpu-l1-0

[Entry gpu-cu-2]
Arch = Evergreen
ComputeUnit = 2
Module = mod-gpu-l1-1

[Entry gpu-cu-3]
Type = GPU
ComputeUnit = 3
Module = mod-gpu-l1-1

[Module mod-cpu-l1-0]
Type = Cache
Geometry = geo-cpu-l1
LowNetwork = net-cpu-l1-mm
LowModules = mod-cpu-mm

[Module mod-cpu-l1-1]
Type = Cache
Geometry = geo-cpu-l1
LowNetwork = net-cpu-l1-mm
LowModules = mod-cpu-mm

[Network net-cpu-l1-mm]
DefaultInputBufferSize = 1024
DefaultOutputBufferSize = 1024
DefaultBandwidth = 256

[Module mod-cpu-mm]
Type = MainMemory
BlockSize = 256
Latency = 100
HighNetwork = net-cpu-l1-mm

[Entry core-0]
Arch = x86
Core = 0
Thread = 0
DataModule = mod-cpu-l1-0
InstModule = mod-cpu-l1-0

[Entry core-1]
Arch = x86
Core = 0
Thread = 1
DataModule = mod-cpu-l1-1
InstModule = mod-cpu-l1-1

All networks shown in this example are internal networks, so no additional network configuration file is
required. The code for the x86 CPU configuration file, passed with option ––x86-config <file>, is
shown below:

[General]
Cores = 1
Threads = 2

Finally, the following listing shows the code for the Evergreen GPU configuration file, passed with
option ––evg-config <file>.

[Device]
NumComputeUnits = 4

122

Figure 9.5: Default memory hierarchy configuration

Table 9.1: Classification of block states based on the possible access types. State N of NMOESI covers
the read-write shared combination not present in the MOESI protocol.

Exclusive Shared
Unmodified E S

Modified M/O N

9.3 Default Configuration
When the memory hierarchy configuration file is omitted for a detailed simulation, Multi2Sim provides
the default hierarchy shown in Figure 9.5. It is composed of individual L1 caches per CPU core, unified
for instructions and data, and shared for every hardware thread if the cores are multithreaded. A
default interconnect based on a single switch connects all L1 caches with a common L2 cache, and
another default network connects the L2 cache with a single main memory module. A similar
configuration is created automatically for the GPU memory hierarchy, using private L1 caches per
compute unit, and a single L2 cache and global memory module.

9.4 The NMOESI Cache Coherence Protocol
Multi2Sim implements a 6-state coherence protocol called NMOESI. This protocol is an extension of
the well-known 5-state MOESI protocol [14], where a new non-coherent N state represents the new
possible condition of a block being in shared, read-write state. Table 9.1 presents a classification of
the NMOESI states (other than I).

Description of the protocol
In standard MOESI, processors can issue load and store accesses into the memory hierarchy. When
only loads are performed, states E and S can occur in cache blocks, denoting exclusive and shared
read-only states, respectively. When a store access is issued, new states M and O can occur, both of
them referring to exclusive versions of read-write copies of the block.

123

Table 9.2: State transitions for the NMOESI protocol.

The NMOESI protocol extends the interface with the processors with a third type of access: a
non-coherent store (or n-store). This access is issued by processors that do not have coherence
requirements and can perform write accesses without a prior request for exclusive access on a cache
block. This is typically the case of GPU cores writing into the global memory hierarchy, where OpenCL
work-groups (CUDA thread-blocks) associated with different L1 caches can access the same cache
block, but only at different locations (false sharing).
An n-store access generates state N in cache blocks, a shared read-write state. When multiple copies
of a cache block in state N are written back into the lower-level cache, the modified bytes in each block
are extracted and combined, leveraging bit masks. If multiple copies of the shared read-write block
modified the same byte, the final value is undefined (i.e., it depends on the order in which the cache
blocks are written back). This behavior complies with the OpenCL/CUDA communication model.
NMOESI adapts coherence requirements to any memory configuration in Multi2Sim. When a memory
hierarchy (or sub-hierarchy) is accessed only by CPU cores, traditional load and store accesses lead to
the occurrence states subset M/O/E/S/I. On the contrary, a hierarchy accessed only by GPU cores
issues load and n-store accesses, leading to the occurrence of states N/S/I—using this subset of the
protocol is equivalent to having no cache coherence at all. Finally, a memory hierarchy accessed both
by CPU and GPU cores can lead to any combination of all 6 states in NMOESI.

State transitions in NMOESI
Table 9.2, inspired in the representation introduced by M. Martin [15], shows the complete set of
possible state transitions for NMOESI. The left column represents all states; the central three columns
represent actions triggered by processing devices; and the right three columns show requests launched
internally in the memory hierarchy. Column labeled n-store shows the consequence of a cache block
targeted by a processing device with a non-coherent store access. As observed, all possible states
cause a hit with an optional block state transition, except for I—the only state that involves coherence
traffic to request block data.
The first row, showing transitions for a block in state N, exhibits a very similar behavior to the row
associated with state S, with the difference that an eviction and a write request on an N block both
cause its data to be sent, either to the next-level cache (writeback) or a neighboring cache (peer
transfer), respectively.
At any time during program execution, when the data-parallel phase of processing completes and the
non-coherent data should be made coherent, an exclusive access can be issued for the block. The

124

(a) Core 0 store: Exclusive-read request misses in
L1 and L2, hits in L3. Data is returned to L1 and
modified.

(b) Core 3 store: Exclusive-read request misses in
L1 and L2, hits in L3. L3 invalidates current owner,
receives modified data, and returns it to Core 3’s L1.

(c) Core 1 store: Same as (b), but starting from Core
1.

(d) Final State: Only one cache has a copy of the
modified data.

Figure 9.6: State transitions and data flow for three cores writing on a single cache block using exclusive
store accesses.

exclusive access will issue invalidates to all copies in the memory hierarchy, which will write back the
non-coherent data. This mechanism allows processes to seamlessly switch between coherent and
non-coherent execution phases simply by changing the store operation.

Example Scenario
This section shows an example to illustrate the behavior of the NMOESI protocol, focusing on the
difference that the new state N imposes on the communication patterns. The memory hierarchy used
in the example is composed of 3 levels of cache, where 4 cores access private L1 caches, each pair of
L1 caches is connected to 2 L2 caches, and there is a single shared L3 cache.
Figure 9.6 focuses on the coherence messages and data transfers caused by a store access, while
Figure 9.7 compares this with n-store accesses. In both cases, three cores make consecutive writes to
different locations within the same cache block, starting with core 0, continuing with core 3, and
finishing with core 1. In the figures, ReadEx represents an exclusive read request, Inv is an invalidate
request, and Read is a non-exclusive read request.
In the case of store accesses, only a single cache in each level of the hierarchy contains a valid copy of
the block after each access. Since the store operations are performed by cores under different L2s, the

125

(a) Core 0 n-store: Read request misses in L1 and
L2, hits in L3. Data is returned to L1 and modified.

(b) Core 3 n-store: Same as (e), but starting from
Core 3.

(c) Core 1 n-store: Read request misses in L1, hits
in L2. Data is returned to L1 and modified.

(d) Final State: Since blocks don’t need to be inval-
idated, many copies exist in the hierarchy.

Figure 9.7: State transitions for three cores writing to a single cache block using n-store requests.

126

Figure 9.8: Directory attached to an L2 cache to enforce coherence between itself and all L1 caches
sharing it.

data ping-pongs back and forth between the caches. In the case of n-store access, however, no further
coherence traffic is generated once a valid copy of the data is found. As additional requests are made,
data propagates through the hierarchy, making successive accesses more efficient.

Cache Directories
To enforce coherence between a cache in level N (where N > 1) and a cache closer to the processor
in level N − 1, a directory is attached to the level-N cache, as represented in Figure 9.8. A directory
has one entry for each block present in its corresponding cache. Together, a cache block and its
associated directory entry contain the following fields:

• State. The state of the block can be any of the five MOESI states (Modified, Owned,
Exclusive, Shared, or Invalid). A real cache needs 3 bits to encode these five possible states.

• Tag. If the block is in any state other than I, this field uniquely identifies the address of the
block in the entire memory hierarchy. In a system with 32-bit physical addresses and a
set-associative cache with Sets sets and blocks of BlockSize bytes, the number of bits needed for
the tag is equal to 32− log2(BlockSize)− log2(Sets).

• Data. Block data of BlockSize bytes.
• Owner. This field contains the identifier of the higher-level cache that owns an exclusive copy of
this block, if any. A special value is reserved to refer to the fact that no exclusive copy of the
block exists. For an L2 cache with n L1 caches connected to it, this field has dlog2(n + 1)e bits.

• Sharers. Bit mask representing the higher-level caches sharing a copy of the block, either
exclusive or non-exclusively. This field has n bits for an L2 cache with n L1 caches connected to
it.

The first three fields are contained in a cache block, while the three last fields comprise a directory
entry. L1 caches do not attach a directory, since they lack higher-level caches to keep coherence
among. Thus, the presence of a block in a first-level cache only requires storing fields State, Tag, and
Data.

Main Memory Directories
A special case of directories are those associated with main memory modules, in the sense that they
are not attached to a cache whose number of blocks can now be used to deduce the directory size. If a
memory module is configured to serve the entire 32-bit physical address space, its size is assumed to be
4GB. In general, a main memory module is assumed to contain all data associated with the addresses
that it serves, without possibly causing a miss that would require disk swapping on a real system.

127

Figure 9.9: Example of a deadlock situation.

However, Multi2Sim accurately models the size of a directory associated with main memory, with the
difference that this size has to be explicitly given in this case, instead of just deduced from an
associated cache size. In the memory configuration file, a module of Type = Memory defines the
properties of its associated directory using variables DirectorySize and DirectoryAssoc. The number of
blocks present in this directory at a given time limits the blocks that can be contained in any
higher-level cache directly or indirectly connected to the main memory module. Please refer to
Section 9.1 for more details on the format of the memory configuration file.

Deadlocks
When a cache access involves several coherence actions, more than one cache block may be updated
at once. For this aim, the associated directory entries must be first locked, and only after all of them
are safely held, the actual block states are changed. This might lead to a deadlock situation when two
coherence transactions are in flight, and one of them is requesting some directory entry that has been
previously locked by the other, and vice versa.
Figure 9.9 shows an example of a deadlock situation in a memory hierarchy portion composed by two
L1 caches where coherence is maintained with respect to a shared L2 cache. In this example, a block X

is contained in both L1 caches in a shared state (read-only), so the directory entry associated with X in
the L2 cache contains a sharer mask with both sharers set to 1. The deadlock occurs when a write
access is issued to blocks X in both L1 caches at the same time.
After the writes are issued, the L1 directory entries are locked, and one write request per L1 cache is
sent to L2. The interconnect controller serializes both requests, and eventually one of them reaches L2
first (assumed is that the request sent by the L1 cache on the left is first). This request locks the L2
directory entry associated with X, and reads the sharer mask; after observing that there is another
sharer of the block, an invalidation is sent upwards toward the L1 cache on the right.
When this invalidation reaches the L1 cache, it tries to lock the directory entry for X. The attempt
fails, so the invalidation waits until the directory entry is released. At the same time, the write request
sent by the L1 cache on the right is trying to lock the L2 directory entry for X, which is already locked
by the coherence transaction triggered by the L1 on the left.
The solution to this deadlock situation implemented by Multi2Sim consists in prioritizing those

128

requests traveling from lower to upper cache levels, and canceling downward requests whenever they
enter in conflict with some other coherence transaction. In other words, if a down-up request stumbles
upon a locked directory entry, it waits until it is released. On the contrary, an up-down request unable
to lock a directory entry gives up and travels backwards, releasing all directory entries locked before.
In the example shown in Figure 9.9, the write request on the right is canceled, and the directory entry
for X in the L1 cache on the right is released. Thus, the invalidation coming from the L2 cache can
proceed, and the cache access started on the left can eventually finish. The canceled L1 access is then
resumed after a specific time. This time is chosen as a variable random number of cycles in order to
guarantee forward progress when multiple L1 caches contend for the same block.

9.5 Statistics Report
A detailed report of the memory hierarchy simulation is dumped in the file specified by the ––mem-report

option. The memory hierarchy statistics report follows the INI file format, containing one section per
cache, main memory module, and interconnect. For each interconnect, the statistics report includes
those sections and variables specified in the description for the network statistics report (Section 10.8).
For each cache or main memory module, the statistics report shows a section [<name>], where <name> is
the module name specified in section [Module <name>] of the memory hierarchy configuration file. The
following variables are provided under this section:

• Accesses. Number of accesses to the cache.
• Hits, Misses. Block hits and misses. Their sum is equal to Accesses.
• HitRatio. Number of hits divided by the number of accesses.
• Evictions. Number of blocks evicted from the cache due to a block replacement (block was

selected by the local block replacement policy), or due to a remote block invalidation (a remote
write request is received).

• Reads, Writes. Block reads and writes. Their sum is equal to Accesses.
• ReadHits, WriteHits. Hit reads and hit writes.
• ReadMisses, WriteMisses. Missed reads and missed writes.
• NonBlockingReads, NonBlockingWrites. Non-blocking accesses occur when the read/write request

comes from an upper-level (up→down) element (i.e., L1 requesting an L2 block, or a processor
requesting an L1 block). These statistics track their occurrences.

• BlockingReads, BlockingWrites. Blocking accesses occur when a read/write request comes from a
lower-level (down→up) element (i.e., main memory requesting an L2 block, or L2 block
invalidating an L1 block). The sum of blocking reads (writes) and non-blocking reads (writes) is
equal to the values reported by Reads (Writes).

To prevent deadlocks, a cache access might be canceled and retried after a random number of cycles
(see Section 9.4). The simulation statistics distinguish the retried accesses by reporting the following
values:

• Retries. Number of retried accesses. This value is always 0 for a cache other than L1.
• ReadRetries, WriteRetries. Number of retried reads/writes. The sum of these values is equal to

Retries.
• NoRetryAccesses. Number of successful accesses, equal to Accesses−Retries.
• NoRetryHits, NoRetryMisses. Successful accesses resulting in hits/misses. Their sum is equal to

NoRetryAccesses.

129

• NoRetryHitRatio. Hit ratio for successful accesses, equal to NoRetryHits divided by
NoRetryAccesses.

• NoRetryReads, NoRetryWrites. Successful reads/writes. Their sum is equal to NoRetryAccesses.
• NoRetryReadHits, NoRetryWriteHits. Successful read/write hit. Directory entries or blocks were

successfully locked and the searched cache line was found.
• NoRetryReadMisses, NoRetryWriteMisses. Directory entries or blocks were successfully locked, but

the searched cache line was not present and it had to be requested somewhere else.

130

Chapter 10

Interconnection Networks

Multi2Sim provides a flexible model of interconnection networks between different cache levels in the
memory hierarchy. The network library in Multi2Sim gives users the ability to manage these
connections. This chapter shows the interconnect model capabilities and configuration, as well as the
description of statistic reports.

10.1 Model Description
In Multi2Sim, interconnects can be defined in two different configuration files: the memory hierarchy
configuration file passed with option ––mem-config <file>, or the network configuration file itself,
passed with option ––net-config <file>. In either case, the network model includes a set of end nodes,
a set of switch nodes, a set of links connecting input with output buffers of pairs of nodes, and a
two-dimensional routing table. For networks defined in the memory configuration file, please see
Chapter 9. The rest of this chapter focuses on custom networks defined within the network
configuration file.
To configure a new network, the user needs to enumerate the nodes in the network configuration file.
Nodes in the network are classified as end nodes, switch nodes, or bus nodes. An end node can send
and receive packets, using another end node as a source or destination node. Switches can only
forward packets between end nodes and other switches. Buses can forward packets between end nodes
and switches, but cannot transfer packets among each other. Bus node represents one or more bus
interconnects and an arbiter. Bus is a shared communication medium which can be connected to a set
of nodes. The arbiter is in charge of deciding which node is allowed to transfer its packet on the bus
first. In case multiple buses are managed by one single arbiter, each bus is referred to as a bus lane.
A bus node is an intermediate node composed of one or more transmission channels, referred to as bus
lanes. Bus lanes are shared by all nodes (end nodes or switches) connected to the bus; in other words,
each node connected to the bus can access any of its bus lanes. A bus also contains an arbiter in
charge of granting access to a specific node, in those cycles where more than one node is trying to
access it at the same time.
The user must also specify a set of links between pairs of nodes. A link is used to connect one end
node to a switch node, or an end node to a bus node. It can be defined as unidirectional or
bidirectional. A unidirectional link connects one output buffer of a source node to one input buffer of a
destination node, while a bidirectional link creates an additional connection between one output buffer
of the destination node and one input buffer of the source node. Input and output buffers are created
implicitly for the nodes every time a new link is defined, as shown in Figure 10.1.
The internal architecture of a switch is shown in Figure 10.2. For each incoming connection, the

131

Figure 10.1: Connection of two nodes with a unidirectional or bidirectional link, with an implicit creation
of input and output buffers in source and destination nodes.

Figure 10.2: Model of the switch architecture.

switch incorporates an input buffer, and an output buffer is created for each outgoing link. The switch
includes a crossbar that communicates all input buffers with all output buffers. Any packet at the head
of an input buffer can be routed by the crossbar into the tail of any output buffer of the switch. If
several input buffers try to reach the same output buffer, an arbiter routes packets from each input
buffer in a round-robin fashion.
A bus node is the representation of one bus lane (or possibly more lanes) and the arbiter that manages
the transmissions over the bus connection. A unidirectional connection between an end node and a
bus node makes it possible for the end node to be connected to all other end nodes or switches that
are connected to the bus node through other unidirectional links, with bus node as source. The arbiter
schedules the transmission of packets over the bus in a round-robin fashion.

10.2 Communication Model
Information exchange between nodes is in form of packets. A packet transmission starts at an end
node and finishes at another end node, possibly traversing a set of intermediate switches or buses. The
transmitted packet can meet different contention points during its lifetime in its route. Permanent
contentions are those that will lead to unsuccessful transmission and simulation failure, while
temporary contentions just delay the successful transmission of a packet.
A permanent contention occurs for two main reason. The first reason is the lack of a possible path
from source to destination. When configuring a network topology, the user must make sure that an
end node can reach every other end node that it needs to communicate with. The network should
include enough links to allow for this communication. The second reason for a permanent contention
is an insufficient capacity for any of the input or output buffers of any intermediate switch or end
node. All buffers involved in the packet transmission should be equal or larger than the packet
attempted to be sent. Three effects can cause temporary contention delaying packet transfer time.
First, a packet is retained in a buffer if it is not located at its head. This effect is well known as

132

head-of-line blocking. Second, a packet located at the head of a buffer can experiment contention if
the link it is requesting is currently occupied with another packet transmission. Finally, a packet also
has to wait at a buffer’s head when the following buffer on the route is full. Only when new entries are
released in the destination buffer, the packet is able to continue its way to the destination node.

10.3 Routing
Routing tables can be configured in Multi2Sim automatically or manually. If no routes are specified in
the network configuration file, the simulator uses the Floyd-Warshall algorithm to initialize the routing
table based on the existing links between the nodes. The routing table contains the shortest paths for
every pair of nodes in the network. The manual mode for the routing table configuration is activated if
the presence of an additional section [Network.<name>.Routes] is found in the network configuration file,
where <name> is the name of a previously defined network. In this case, only those routes specified by
the user are eligible for a packet. For every pair of nodes that can be reached from one another, the
user needs to specify what is the next hop traversed in the network. Nodes that are at a 1-hop
distance are implicitly accessible.
For example, let us assume a network with two end nodes n1 and n2, and one switch sw. Node n1 is
connected to sw through a unidirectional link, and sw is in turn connected to n2. In the manual
configuration, the user must specify that node n1 needs to route a packet through sw if its final
destination is n2. This is done by including this entry in the configuration file: n1.to.n2 = sw. Once the
packet is in sw, it knows that the next step is traversing the link that connects it to n2, since it is
placed at a 1-hop distance. A more sophisticated example is presented in Section 10.6.
When a route is specified between two nodes, there must be a link connecting the source node and the
next hop. For example, the routing entry n1.to.n2 = sw relies on a previously created link between n1

and sw. The user must also make sure that all possible routes potentially followed by packets are
specified. The ability to route packets between every pair of nodes is not checked by Multi2Sim at
start up. Instead, execution will stop with an error message if a packet is sent between unreachable
nodes during simulation.
Multi2Sim also provides the potential to use Virtual Channels (VCs) between two nodes. A virtual
channel is a communication path built on a time-multiplexed physical link and consuming a portion of
its total bandwidth but are nowadays also leveraged to improve network latency and throughput. Each
unidirectional virtual channel is realized by its own private pair of input and output buffers. Virtual
channels were originally presented to solve the problem of deadlocks in networks.
Deadlock is a network state where no messages can advance because each message requires to be
forwarded to a buffer which is occupied by another message. When a network contains cycles, the
occurrence of deadlock is probable.It is the responsibility of Multi2Sim’s user to make sure that the
routing table does not contain cycles, which could lead to deadlocks while transmitting packets during
simulation time. When the routing table is created automatically, the network topology should be
cycle-free, that is, no node should be reachable from itself after initially traversing one of its output
links. When the routing table is manually configured, the only requirement is to avoid cycles in the
routes. Even if the topology contains cycles in this case, the network is deadlock-free if the routing
table omits them.
Multi2Sim checks for cycles in the routing table at the beginning of the simulation. If one is found, a
warning is shown, but the simulation still continues. Whether the routing cycle entails an effective
deadlock depends on the specific combination of transferred packets. Note that a simulation silently
stalls upon a deadlock occurrence, potentially leaving the user wondering about unexpectedly long and
seemingly endless simulation times.

133

10.4 Network Configuration
The network configuration file is a plain-text INI file (see Section 14.1), passed to the simulator with
option ––net-config <file>. Section [General] contains the following variables:

• Frequency (optional). Frequency in MHz for all interconnection networks in the memory system.
The default value for this variable is 1000 (= 1GHz).

Multiple interconnects can be defined in the same configuration file, including its nodes, links, and
routing paths. A new network is created for each section named [Network.<name>]. The string specified
in <name> is used later in the network configuration file, as well as the memory hierarchy configuration
file, to refer to the defined network. The variables contained in this section are:

• DefaultInputBufferSize (required). Default size for input buffers in nodes and switches, specified
in number of packets. If the section creating a new end node or switch does not specify a size
for its input buffers, this default size will be used instead.

• DefaultOutputBufferSize (required). Default size for output buffers in nodes and switches in
number or packets. Upon creation of a switch or node in the network, the simulator uses this
size, unless a different value is given in the node section.

• DefaultBandwidth (required). Default bandwidth for links in the network, specified in number of
bytes per cycle. If a link’s bandwidth is not specified, the simulator uses this value.

A network node is created with a new section following the pattern [Network.<network>.Node.<node>],
where <network> is a previously defined interconnect, and <node> is the name of the node. The string in
node is used to refer to this node from other sections in the network configuration file, the memory
hierarchy configuration file, and statistic reports. The following variables are associated with each
node:

• Type. Type of the node. Possible options are EndNode, Switch or Bus.
• InputBufferSize (optional). Size of the input buffer in number of packets. If not present, the
input buffer size is set to the value specified in DefaultInputBufferSize of the corresponding
network section. This variable is not allowed for nodes of type Bus.

• OutputBufferSize (optional). Size of output buffers in number of packets. If not present, the
output buffer size is set to the value specified in DefaultOutputBufferSize of the corresponding
network configuration. This variable is not allowed for nodes of type Bus.

• Bandwidth (optional). For switches, bandwidth of internal crossbar communicating input with
output buffers. If not present, the value is set to the value specified in DefaultBandwidth of the
corresponding network section. For end nodes, this variable is ignored.

• Lanes (optional). For Buses, this is the number of bus lanes that are connected to end nodes’
output buffers. The number of lanes determines the maximum number of packets that can be
transferred simultaneously on the bus. If not present, this value defaults to 1.

New links are created with sections following the pattern [Network.<network>.Link.<link>], where
<network> is the network name, and <link> is the name of the link. The string in link is used to refer
to this link from other sections in the network configuration file, memory hierarchy configuration file,
and statistic reports. A link connects an output buffer of a source node with an input buffer of a
destination node. These buffers are created automatically for each link.

• Source (required). Source node connected to the link. The value for this variable should be the
name of a node defined using a section of type Network.<network>.Node.<node>, and only the
string specified in <node> should be used.

134

• Dest (required). Destination node for the link.
• Type (optional). This variable defines the link direction. Possible values are Unidirectional

(default) and Bidirectional. A bidirectional link is equivalent to two unidirectional links in
opposite directions, with the corresponding additional input and output buffers created for each
link.

• Bandwidth (optional). Bandwidth of the link in bytes per cycle. If not present, the value is taken
from variable DefaultBandwidth in the corresponding network section.

• SourceBufferSize (optional). Size of the source node’s output buffer connected to the link, given
in number of packets. If the value is not present, the buffer size is inherited from the source
node’s default output buffer size, or the corresponding network’s default output buffer size.

• DestBufferSize (optional). Size of the destination node’s input buffer connected to the link,
given in number of packets. If not present, this value is inherited from the destination node’s
input buffer size or otherwise the corresponding network’s default input buffer size.

• VC (optional). Number of Virtual channels. The default value is 1, meaning that the link is not
split into virtual communication paths at all.

The routing table can be manually configured with a section [Network.<network>.Routes]. For a single
route between two end nodes, every route step from source to destination should be identified. In
other words, a route step must be given between every node in the network and every end node that it
should be able to reach. Defining each unidirectional route step follows pattern <node_A>.to.<node_C> =

<node_B>[:<VC>].
• node_A. Source node of a route step. This node can be either an end node or a switch.
• node_C. Destination node of a route step. It must be an end node.
• node_B. Immediate next node where a packet must be routed when its current location is node_A

and its final destination is node_C. A link or bus must exist connecting node_A to node_B.
• VC (optional). Virtual channel identifier that is being used for the certain route-step. When a
link is not split into multiple virtual channels, this field should be omitted. If omitted, for a link
that does contain virtual channels a default value of 0 is considered. If the connection is via a
bus node, VC should be omitted or set equal to zero.

If two nodes are connected via a bus, the bus node can be omitted in the configuration of the routing
table. For example, two switches A and C connected through a bus node B, and forming part of the
path to destination node D, need one single entry in the routing table, specifying that A-to-C is the
route step used to reach D.

10.5 Example of Network Configuration
To illustrate the network configuration file format, an example network is shown in Figure 10.3. This
network is composed of 4 end nodes and 3 switches, connected with each other using unidirectional or
bidirectional links, as reflected by the single or double-arrow connectors, respectively. The following
listing shows the network configuration file associated with this example. In this listing, the routing
between nodes is done automatically. Additional examples of network configurations can be found in
Section 9.2, also illustrating their integration with the rest of the memory hierarchy.

135

Figure 10.3: Example of a network with 4 end nodes, 3 switches, 4 bidirectional links, and 2 unidirectional
links.

[Network.mynet]
DefaultInputBufferSize = 16
DefaultOutputBufferSize = 16
DefaultBandwidth = 1

[Network.mynet.Node.N1]
Type = EndNode

[Network.mynet.Node.N2]
Type = EndNode

[Network.mynet.Node.N3]
Type = EndNode

[Network.mynet.Node.N4]
Type = EndNode

[Network.mynet.Node.S1]
Type = Switch

[Network.mynet.Node.S2]
Type = Switch

[Network.mynet.Node.S3]
Type = Switch

[Network.mynet.Link.N1-S1]
Type = Bidirectional
Source = N1
Dest = S1

[Network.mynet.Link.N2-S2]
Type = Bidirectional
Source = N2
Dest = S2

[Network.mynet.Link.S3-S1]
Type = Bidirectional
Source = S3
Dest = S1

[Network.mynet.Link.S3-S2]
Type = Bidirectional
Source = S3
Dest = S2

[Network.mynet.Link.S3-N3]
Type = Unidirectional
Source = S3
Dest = N3

[Network.mynet.Link.N4-S3]
Type = Unidirectional
Source = N4
Dest = S3

10.6 Example of Manual Routing
In this section, an example of a network configuration file with automatic and manual routing is
presented. Figure 10.4(a) shows an indirect network with six nodes, where each of them is connected
to a separate switch, and switches are connected to each other forming a 2×3 mesh topology. The
following listing shows the configuration file associated with this network.
If a routing section is not present in the configuration file, the simulator automatically calculates the
shortest paths between each pair of end nodes. Automatic routes are safe when the topology does not
include connectivity cycles. However, the presence of link cycles could cause deadlocks if packets
follow those routes. The mesh is an example of such topologies, where the user needs to enter a
custom routing table to safely route packets without deadlocks.

136

Figure 10.4: Example of a network with 6 end nodes, a 2×3 mesh of switches, all bidirectional links.

137

[Network.mynet]
DefaultInputBufferSize = 4
DefaultOutputBufferSize = 4
DefaultBandwidth = 1

[Network.mynet.Node.N1]
Type = EndNode

[Network.mynet.Node.N2]
Type = EndNode

[Network.mynet.Node.N3]
Type = EndNode

[Network.mynet.Node.N4]
Type = EndNode

[Network.mynet.Node.N5]
Type = EndNode

[Network.mynet.Node.N6]
Type = EndNode

[Network.mynet.Node.S1]
Type = Switch

[Network.mynet.Node.S2]
Type = Switch

[Network.mynet.Node.S3]
Type = Switch

[Network.mynet.Node.S4]
Type = Switch

[Network.mynet.Node.S5]
Type = Switch

[Network.mynet.Node.S6]
Type = Switch

[Network.mynet.Link.N1-S1]
Type = Bidirectional
Source = N1
Dest = S1

[Network.mynet.Link.N2-S2]
Type = Bidirectional
Source = N2
Dest = S2

[Network.mynet.Link.N3-S3]
Type = Bidirectional
Source = N3
Dest = S3

[Network.mynet.Link.N4-S4]
Type = Bidirectional
Source = N4
Dest = S4

[Network.mynet.Link.N5-S5]
Type = Bidirectional
Source = N5
Dest = S5

[Network.mynet.Link.N6-S6]
Type = Bidirectional
Source = N6
Dest = S6

[Network.mynet.Link.S1-S2]
Type = Bidirectional
Source = S1
Dest = S2

[Network.mynet.Link.S1-S4]
Type = Bidirectional
Source = S1
Dest = S4

[Network.mynet.Link.S2-S3]
Type = Bidirectional
Source = S2
Dest = S3

[Network.mynet.Link.S2-S5]
Type = Bidirectional
Source = S2
Dest = S5

[Network.mynet.Link.S3-S6]
Type = Bidirectional
Source = S3
Dest = S6

[Network.mynet.Link.S4-S5]
Type = Bidirectional
Source = S4
Dest = S5

[Network.mynet.Link.S5-S6]
Type = Bidirectional
Source = S5
Dest = S6

As an initial example illustrating Multi2Sim’s configuration potential for routing tables, Figure 10.4(b)
shows two routes used for packets going from n4 to n5 (green) and from n6 to n2 (red). The following
listing shows the additional code that should be added to the network configuration file to support
these routes.

[Network.mynet.Routes]
N4.to.N5 = S4
S4.to.N5 = S1
S1.to.N5 = S2
S2.to.N5 = S3
S3.to.N5 = S6
S6.to.N5 = S5

N6.to.N2 = S6
S6.to.N2 = S5
S5.to.N2 = S4
S4.to.N2 = S1
S1.to.N2 = S2

As a realistic example, X-Y routing is a popular routing scheme used in mesh networks, using a unique
shortest path between each pair of end nodes in a deadlock-free manner. Figure 10.4(c) presents the
routes for the same two pairs of nodes using X-Y routing. Table 10.1 completes all possible routes for
the 2×3 mesh, and the following listing shows the additional code required in the network
configuration file.

138

[Network.mynet.Routes]
N1.to.N2 = S1
S1.to.N2 = S2

N1.to.N3 = S1
S1.to.N3 = S2
S2.to.N3 = S3

N1.to.N4 = S1
S1.to.N4 = S4

N1.to.N5 = S1
S1.to.N5 = S2
S2.to.N5 = S5

N1.to.N6 = S1
S1.to.N6 = S2
S2.to.N6 = S3
S3.to.N6 = S6

N2.to.N1 = S2
S2.to.N1 = S1

N2.to.N3 = S2

N2.to.N4 = S2
S2.to.N4 = S1

N2.to.N5 = S2

N2.to.N6 = S2

N3.to.N1 = S3
S3.to.N1 = S2

N3.to.N2 = S3
S3.to.N2 = S2

N3.to.N4 = S3
S3.to.N4 = S2
S2.to.N4 = S1

N3.to.N5 = S3
S3.to.N5 = S2

N3.to.N6 = S3

N4.to.N1 = S4
S4.to.N1 = S1

N4.to.N2 = S4
S4.to.N2 = S5
S5.to.N2 = S2

N4.to.N3 = S4
S4.to.N3 = S5
S5.to.N3 = S6
S6.to.N3 = S3

N4.to.N5 = S4
S4.to.N5 = S5

N4.to.N6 = S4
S4.to.N6 = S5
S5.to.N6 = S6

N5.to.N1 = S5
S5.to.N1 = S4

N5.to.N2 = S5

N5.to.N3 = S5

N5.to.N4 = S5
S5.to.N4 = S4

N5.to.N6 = S5

N6.to.N1 = S6
S6.to.N1 = S5

N6.to.N2 = S6
S6.to.N2 = S5

N6.to.N3 = S6

N6.to.N4 = S6
S6.to.N4 = S5

N6.to.N5 = S6
S6.to.N5 = S5

Table 10.1: Manual X-Y Routing for every pair of end nodes in the network.

Source Switches Dest Source Switches Dest
N1 S1 S2 N2 N4 S4 S1 N1

S1 S2 S3 N3 S4 S5 S2 N2
S1 S4 N4 S4 S5 S6 S3 N3
S1 S2 S5 N5 S4 S5 N5
S1 S2 S3 S6 N6 S4 S5 S6 N6

N2 S2 S1 N1 N5 S5 S4 S1 N1
S2 S3 N3 S5 S2 N2
S2 S1 S4 N4 S5 S6 S3 N3
S2 S5 N5 S5 S4 N4
S2 S3 S6 N6 S5 S6 N6

N3 S3 S2 S1 N1 N6 S6 S5 S4 S1 N1
S3 S2 N2 S6 S5 S2 N2
S3 S2 S1 S4 N4 S6 S3 N3
S3 S2 S5 N5 S6 S5 S4 N4
S3 S6 N6 S6 S5 N5

10.7 Example Using Virtual Channels
Figure 10.5 shows an indirect network with four nodes, where each of them is connected to a
corresponding switch (i.e. end node n0 to switch s0) with a physical link. Switches are connected to

139

each other with unidirectional links, forming a 4-node ring topology. Two routes are shown in this
example: One from end node n0 to end node n3, and another from end node n2 to end node n1.
Packets from node n0 to node n3 should go through switches s0, s1, s2, and s3 and packets from node
n2 to node n1 should go through switches s2, s3, s0, and s1, respectively. There is a cycle between
switches in this network because routes in the network go through the same switches while two
route-steps in these two routes use same physical links and buffers.

Figure 10.5: Example of a network with 4 end nodes and four switches. Switches are connected forming
a ring topology.

A deadlock scenario is presented for this network in Figure 10.6. As shown in the figure, end node n0 is
sending its packets (marked with blue rhombuses) to n3 and end node n2 is sending its packets
(marked with red squares) to n1. Blue and red packets share two physical links through their path, i.e.
physical link between s2 and s3 and link between s0 and s1. The deadlock occurs in this scenario
because blue packets cannot advance due to the input buffer in switch s3 being occupied with red
packets; and simultaneously, red packets cannot advance due to the input buffer in switch s1 being
fully occupied with blue packets.

Figure 10.6: Example of a deadlock potential in the network.

To solve the deadlock in this example, virtual channels can be used on either of two links, shared
between these routes. Two virtual channels are introduced on top of the physical link between s2 and
s3, and each of them assigned to one route. This way blue packets from n0 to n3 advance through one
of the virtual channels and red packets from n2 to n1 advance through the other. Figure 10.7
illustrates the resolution of the deadlock by means of the additional virtual channel.
The following listing shows the configuration file associated with this network. For the link between
switches s2 and s3, variable VC in section [Network.mynet.Link.s2-s3] is used to define the number of

140

Figure 10.7: Resolution of the deadlock condition.

virtual channels on top of the physical link. The virtual channels are then used in the routes defined in
section [Network.mynet.Routes] by using suffices :0 and :1 in the corresponding route-steps.

[Network.mynet]
DefaultInputBufferSize = 4
DefaultOutputBufferSize = 4
DefaultBandwidth = 1

[Network.mynet.Node.n0]
Type = EndNode

[Network.mynet.Node.n1]
Type = EndNode

[Network.mynet.Node.n2]
Type = EndNode

[Network.mynet.Node.n3]
Type = EndNode

[Network.mynet.Node.s0]
Type = Switch

[Network.mynet.Node.s1]
Type = Switch

[Network.mynet.Node.s2]
Type = Switch

[Network.mynet.Node.s3]
Type = Switch

[Network.mynet.Link.n0-s0]
Type = Bidirectional
Source = n0
Dest = s0

[Network.mynet.Link.n1-s1]
Type = Bidirectional
Source = n1
Dest = s1

[Network.mynet.Link.n2-s2]
Type = Bidirectional
Source = n2
Dest = s2

[Network.mynet.Link.n3-s3]
Type = Bidirectional
Source = n3
Dest = s3

[Network.mynet.Link.s0-s1]
Type = Unidirectional
Source = s0
Dest = s1

[Network.mynet.Link.s1-s2]
Type = Unidirectional
Source = s1
Dest = s2

[Network.mynet.Link.s2-s3]
Type = Unidirectional
Source = s2
Dest = s3
VC = 2

[Network.mynet.Link.s3-s0]
Type = Unidirectional
Source = s3
Dest = s0

[Network.mynet.Routes]
n2.to.n1 = s2
s2.to.n1 = s3:0
s3.to.n1 = s0
s0.to.n1 = s1

n0.to.n3 = s0
s0.to.n3 = s1
s1.to.n3 = s2
s2.to.n3 = s3:1

10.8 Statistics Report
A detailed report of the interconnection network simulation is dumped in the file specified by the
––net-report <file> option. The statistic report follows the INI file format, and includes one separate
section [Network.<name>] for every network created in the system. The following variables are used:

141

• Transfers. Total number of packets received by all nodes in the network.
• AverageMessageSize. The average message (packet) size of total packets transferred in the

network.
• AverageLatency. The average latency of packets that are transferred throughout the network in
cycles.

The set of statistics related to each link in the network is presented in sections following the pattern
[Network.<network>.Link.link_<source>.out_buf_<bufferid> >_<dest>.in_buf_<bufferid>], where
bufferid fields represent integer buffer identifiers created automatically for the link. A bidirectional link
shows two sections in the statistic report, each corresponding to one of the equivalent unidirectional
links.

• Config.Bandwidth. Link bandwidth, as specified in the network configuration file.
• TransferredMessages. Number of transferred packets through the specific link in number of

packets.
• TransferredBytes. Amount of data transferred through this link in bytes.
• BusyCycles. Number of cycles where the link was busy transferring data.
• BytesPerCycle. Number of bytes transfered per cycle, considering the entire simulation time.
• Utilization. Link utilization, calculated as the ratio of BytesPerCycle over the link bandwidth.

For each end node or switch, section [Network.<network>.Node.<node>] provides the following statistics:
• Config.InputBufferSize. Input buffer size, as specified in the network configuration file.
• Config.OutputBufferSize. Output buffer size, as specified in the network configuration file.
• SentMessages. Number of packets sent by the node.
• SentBytes. Amount of data sent by node in bytes.
• SendRate. Bytes per cycle sent by the node.
• ReceivedMessages. Number of packets received from the network.
• ReceivedBytes. The amount of data received by the node in bytes.
• ReceiveRate. Bytes per cycle received by the node.
• In/out_buf_<number>.MessageOccupancy. Average occupancy of input and output buffers in number
of packets per cycle. A separate variable is reported for each buffer created for the node.

• In/out_buf_<number>.ByteOccupancy. Average occupancy of input and output buffers in number of
bytes per cycle.

• In/out_buf_<number>.Utilization. Average buffer occupancy in bytes as a fraction of the
maximum buffer capacity.

For each bus node, section [Network.<network.Node.<node>] provides the following statistics:
• BUS Lane <id>. The identifier of the bus lane, assigned automatically by the simulator.
• <node>_bp_<id>.Bandwidth. The bandwidth of the bus lane.
• <node>_bp_<id>.TransferredMessages. Number of transferred packets through the specific bus lane

in number of packets.
• <node>_bp_<id>.TransferredBytes. Amount of data transferred through this lane in bytes.
• <node>_bp_<id>.BusyCycles. Number of cycles where the lane was busy transferring data.

142

• <node>_bp_<id>.BytesPerCycle. Number of bytes transfered per cycle, considering the entire
simulation time.

• <node>_bp_<id>.Utilization. Lane utilization, calculated as the ratio of BytesPerCycle over the
lane bandwidth.

A visual representation of network utilization statistics can be obtained with option ––net-visual

<file>. The file produced with this option is interpreted automatically with GraphPlot, a Python script
available at multi2sim/samples/network/graphplot. The output of GraphPlot is an EPS image.

$./graphplot <net-visual-file> <eps-output-file>

N7 N6N8 S1 N9N2

N1

N3N5N4

S4 S2

S7 S5 S3

S8 S6

S9

Utilization

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 10.8: Visual representation of a network.

As an example, Figure 10.8 shows a visual representation of a sample network. Light blue circles are
end nodes, while bigger pale blue circles are switches. Small dark blue circles can be ignored—they are
introduced to improve the distribution of lines on the final image. The color of each link represents its
utilization throughout the simulation.
This representation allows us to determine bottlenecks in network utilization. The network designer
can then adjust the network topology and link bandwidths to balance traffic and optimize resources.

10.9 Stand-Alone Network Simulation
Multi2Sim provides a tool to stress an interconnect given in the network configuration file using
synthetic traffic patterns. This tool is referred to as the stand-alone network simulator, and is
integrated within the rest of the simulator functionality. It can be invoked using command-line option
––net-sim <network>, where network is the name of a network defined in the network configuration file
passed with option ––net-config <file>. The following additional command-line options are available
for stand-alone network simulation:

143

• ––net-injection-rate <rate> (Default = 0.001). Packet injection rate for every end node in the
network. Each end node injects packets in the network using random delays with exponential
distribution, where lambda = rate. The destination end node of the packet is also chosen
randomly among all reachable destination end nodes.

• ––net-max-cycle <cycle> (Default = 1M). Number of simulation cycles.
• ––net-msg-size <size> (Default = 1 byte). Packet size in bytes. An entire packet should fit in

the smallest buffer created in the network. The transfer latency of a packet will depend on the
bandwidth of the links it has to traverse, as well as the contention it experiences in every
intermediate node.

Assuming that the example configuration file shown in Section 10.5 is stored in file net-config, the
following command line can be used to stress network mynet during 1M cycles, having each node inject
one packet to the network every 10 cycles on average:

m2s --net-config net-config --net-sim mynet --net-max-cycles 1000000 \
--report-net report-net --net-injection-rate 0.1

Network Commands
In the network configuration file, section [Network.<name>.Commands] can be used to manually inject
messages to a network. The user can deterministically send packets from end nodes in the network to
re-create desirable scenarios. Commands can also be used to perform sanity checks on state of packets
in the network and verify their expected output. This section of the configuration file can be only used
in stand-alone network simulation mode and without the ––net-injection-rate option. Each variable in
section [Network.<name>.Commands] represent one command. Commands are listed in increasing order
starting at 0, with their index set off in brackets:

[Commands]
Command[0] = 1 send n0 n2 1 1
Command[1] = 1 send n1 n2 1 2
Command[2] = 2 outbuffercheck n0 1
Command[3] = 2 nodecheck n1 2
Command[4] = 3 inbuffercheck n2 1
Command[5] = 4 inbuffercheck n2 2
Command[6] = 3 receive n2 1
...

Each command is a string formed of a set of tokens separated with spaces. The possible commands
can be split into two different categories, depending on whether a message is sent or its location in the
network is being checked. Commands with the following format send a message in the network:

• <cycle> send <source-node> <destination-node> <message-size> <message-id>. Using this
command, a message of size message-size is sent from source-node to destination-node in the
specified cycle. Both message-size and message-id are optional fields. If the message size is not
specified the transferred message will have the same size as specified by ––net-msg-size option.
Field message-id can be used to refer to this message in subsequent commands.

The following commands perform sanity checks and validation.
• <cycle> inbuffercheck <node> <message-id>. This command validates that the message with the
specified message-id is in one of the input buffers of the provided node at the specified cycle.

• <cycle> outbuffercheck <node> <message-id>. This command validates that the message with the
specified message-id is in one of the output buffers of the provided node at the specified cycle.

144

• <cycle> nodecheck <node> <message-id>. This command is the combination of the previous two
commands and checks to validate if the message is in one of the buffers (either input or output)
of the provided node at the specified cycle. This command is very useful for validating network
configuration with so big number of nodes

• <cycle> exactposcheck <node> <buffer-name> <message-id>. This command validates that the
message with the specified message-id is in a specific buffer of the node with the provided
buffer-name at the specified cycle.

• <cycle> receive <node> <message-id>. Validates that message message-id is received at the
specified cycle.

The output of these checks is printed out on the standard output followed by message PASS or FAIL,
indicating whether the validation was successful or not.

145

Chapter 11

M2S-Visual: The Multi2Sim Visualization
Tool

11.1 Introduction
M2S-Visual is a visualization tool, integrated in the Multi2Sim simulation framework, that provides
visual representations for analysis of architectural simulations. The primary function of M2S-Visual is
to observe the state of the CPU and GPU pipeline and the state of the memory, providing features
such as simulation pausing, stepping through cycles, and viewing properties of in-flight instructions
and memory accesses.
The state of CPU and GPU software entities (contexts, work-groups, wavefronts, and work-items) and
memory entities (accesses, sharers, owners) are represented, along with the state of CPU and GPU
hardware resources(cores, compute units) and memory hierarchy(L1 cache, L2 cache and the main
memory). The main window shows the overview of the CPU, GPU and memory. Secondary windows
can be opened, representing time or block diagram that the user can navigate through.

Compilation of M2S-Visual
M2S-Visual is integrated in the same executable file as the rest of Multi2Sim’s simulation features.
The tool requires the GTK 3.0 development packages to be installed in your system for correct
compilation. If this library is missing, Multi2Sim will still compile successfully, but without support for
the visualization features. During the compilation of Multi2Sim, the configure script will detect the
presence of this package, and output a warning message in case it is not found.

Running M2S-Visual
M2S-Visual acts as an off-line analysis tool. In a first execution of an architectural simulator,
Multi2Sim generates a trace file containing a detailed report of all actions occurring in the modeled
hardware. The generation of the trace file is configured with command-line option ––trace <file>,
where <file> is a plain-text file compressed with the gzip format. The name of the file should have the
.gz extension (e.g., output-trace.gz).
When launching a detailed simulation with activated traces, one needs to be careful with the
computational weight of simulated programs. The simulator dumps several lines of text in every
execution cycle, and even if the output format is compressed, its size can reach gigabytes of
information very quickly.

146

An example is given next on how to run the test-threads application1 using a CPU configuration with
4 cores. This mini-benchmark is an x86 program that takes a value n as an argument, and spawns
n− 1 child threads. Each thread, including the parent, dumps its identifier, and exits. The first step is
creating a CPU configuration file (x86-config) specifying the number of CPU cores:

[General]
Cores = 4

The CPU detailed simulation is launched with the following command:

m2s --x86-sim detailed --x86-config x86-config --trace my-trace.gz test-threads.i386 4

The following code is an excerpt of file my-trace.gz, generated during the simulation (command gunzip

my-trace.gz can be used to uncompress the trace):
...
c clk=144
x86.inst id=16 core=0 stg="wb"
x86.inst id=18 core=0 stg="wb"
x86.inst id=19 core=0 stg="i"
x86.inst id=21 core=0 stg="i"
mem.access name="A-3" state="cpu-l2:find_and_lock_action"
mem.access name="A-3" state="cpu-l2:find_and_lock_finish"
mem.access name="A-3" state="cpu-l2:read_request_action"
mem.access name="A-5" state="cpu-l2:read_request_receive"
mem.access name="A-3" state="cpu-l2:read_request_updown"
mem.access name="A-5" state="cpu-l2:find_and_lock"
mem.new_access_block cache="cpu-l1-0" access="A-1" set=4 way=1
...

The trace file is formed of a set of header specifying the configuration of the processor model for this
specific simulation. For each simulation cycle, a set of lines represent all actions occurring in processor
pipelines, GPU compute units, or memory hierarchy components. The specific format of the
simulation trace out of the scope of this guide, but is documented instead in code comments on the
M2S-Visual source code.
Once the trace has been generated, the next step is launching M2S-Visual consuming it (using the
compressed version, as generated by the previous m2s execution). To launch M2S-Visual, option
––visual <file> is used, where <file> is the compressed trace file.

m2s --visual my-trace.gz

Before the main window shows up, the trace is uncompressed, and simulation checkpoints are created.
The goal of the checkpoints is to allow for fast navigation through cycles. For example, if the user
wants to navigate from cycle 1040 back to cycle 1039, a checkpoint-less implementation would need
to reset the visualized machine state, and process the trace lines for all 1039 again. On the contrary,
assuming a checkpoint frequency of 500 simulation cycles, M2S-Visual loads the visualized machine
state at cycle 1000, and then processes only those trace lines for the following 39 cycles. In
simulations with millions of cycles, this feature is indispensable.
As an additional example, the following two lines of code show the code for the execution and
visualization of a GPU program, using the OpenCL matrix multiplication implementation available in
the AMD SDK benchmark suite (Section Benchmarks on the website):

1This program is available on Multi2Sim’s website, under Section Benchmarks, as part of the Mini-Benchmarks suite

147

$ m2s --evg-sim detailed --trace my-trace.gz MatrixMultiplication \
--load MatrixMultiplication_Kernels.bin -x 32 -y 32 -z 32 -q

$ m2s --visual my-trace.gz

11.2 Main Window
The main window of M2S-Visual has four components: a cycle bar, a CPU panel, a GPU panel and a
memory system panel. The availability of CPU and GPU panel depends on the type of detailed
simulation was run. The CPU panel activates for detailed CPU simulations, while the GPU panel
becomes available for GPU detailed simulations. The memory panel is shown in either case.

The Cycle Bar
The cycle navigation bar features both a scrollable bar and navigation buttons to step through
simulation cycles at desired increments (1, 10, or 100) or to jump to a specific cycle number (Figure
11.1. This cycle bar synchronizes the main window with all secondary windows and diagrams opened
for this simulation, as described below.

Figure 11.1: Cycle navigation bar.

Panels
The outlook of the rest of the panels depends on the simulation settings. For example, the number of
elements in the CPU panel depends on the number of cores set up for the simulation. They show a
summary of the current state of the CPU cores, GPU compute units, and memory system at the cycle
selected with the cycle navigation bar.

Figure 11.2: Panel representing a multi-core x86 CPU, as part of M2S-Visual’s main window.

In Figure 11.2, an example of the CPU panel state is shown for a 4-core processor model. Each CPU
core is represented with a gray board, and contains a busy indicator (red or green light), the list of
contexts running on the CPU core and a Detail button. Clicking on a context label opens a pop-up
window showing detailed information about the context, while the Detail button opens a time diagram
for the core.
Figure 11.3 shows an excerpt of the GPU panel state, where each gray board represents a compute
unit. Each GPU compute unit contains a busy indicator, a list of work-groups running on it, and a

148

Figure 11.3: Panel representing an Evergreen GPU, as part of M2S-Visual’s main window.

Detail button. Clicking on a work-group label opens an information pop-up window for the
work-group, while the Detail button provides a time diagram for the compute unit.

Figure 11.4: Panel representing the memory hierarchy. This panel is part of M2S-Visual’s main window.

Finally, Figure 11.4 shows an example of the state of a memory hierarchy for a 4-core processor, using
private L1 caches, and a shared L2 cache. Each gray board represents a cache or a main memory
module (directory). A busy indicator shows whether the module is currently serving any access. The
list of accesses currently being served is shown underneath. The label representing an access can be
clicked on to observe the access properties. A Detail button shows the detailed state of the module.

11.3 The x86 CPU Visualization
For each CPU core, a time diagram can be generated and navigated through by pressing the Detail
button on the CPU panel. Multiple time diagrams can be opened at the same time for different CPU
cores, and all of them are synchronized when the cycle navigation controls on the main window are
updated.
As shown in Figure 11.5, a CPU time diagram contains columns. The left column is the x86
instructions in flight. The middle column contains the micro-code generated for x86 instructions. The
micro-code is generated following the rules in Section 2.7. Though the micro-instructions are
effectively generated in the decode stage on a real machine, the time diagram represents them starting
from the fetch stage, as soon as the cache block containing the associated x86 instruction is fetched

149

Figure 11.5: Time diagram for the x86 CPU pipeline. The time diagram is opened by clicking on the
Detail button on a specific x86 core board.

from the instruction cache. The right column contains a table, representing the pipeline stage where a
micro-instruction is located in each cycle. Speculative x86 instructions and micro-code in the two
left-most columns are colored red. These instructions are squashed at the time a mispeculated branch
reaches the writeback or commit stage, depending on the configuration for branch resolutions.

11.4 The Evergreen GPU Visualization

Figure 11.6: Time diagram for the Evergreen GPU pipeline, opened by clicking on the Detail button on
a specific Evergreen compute unit board.

For each GPU compute unit, a time diagram can be generated and navigated through by pressing the
Detail button on the main window, as shown in Figure 11.6. Multiple time diagrams can be opened at
the same time for different compute units, and all of them will be synchronized when the cycle
navigation controls on the main window are updated.
The left column shows the assembly code of Evergreen instructions running on the compute unit, in
the same order that they were fetched. The columns in the right table represent cycles, while the rows
correspond to instructions in flight. The contents of each table cell represents the pipeline stage where
instructions are located. Instructions are colored green, red, or blue, depending on whether they
belong to control-flow (CF), arithmetic-logic (ALU), or texture (TEX) clauses, respectively (see
Section 6.2 for more information on the Evergreen ISA). Darker color tonalities are used for later
stages in the pipelines.

150

11.5 Memory Hierarchy Visualization

Figure 11.7: Visual representation of a cache.

The simulated memory hierarchy panel is structured in levels of caches or memory modules, where a
higher module is a module closer to the processor. Figure 11.4 shows an example for a memory
hierarchy representation composed of four L1 caches, one shared L2 cache, and one shared main
memory. Pressing the Detail button opens the visual representation of a cache.
Figure 11.7 shows an example of a 2-way set-associative L1 cache with 16 sets. The top panel
contains in-flight accesses in the module, labeled A-x, where x is an access identifier assigned in order
of creation. Each cell is a cache block, containing a tag and a state. The state can be one of the five
states in the MOESI cache coherence protocol, and it determines the color of the cell. The two smaller
cells on the right of the tag represent the number of sharers in the upper-level cache for this block,
and the number of in-flight accesses for the block, respectively.
For highest-level modules, the number of sharers of a block is always 0. For lowest-level modules (i.e.,
main memory modules), the table represents only the directory, organized as a cache structure, no
different from upper-level cache structures. Notice that the size of the directory in a memory module
determines the maximum number of in-flight blocks in the rest of the memory hierarchy.
Figure 11.8(a) shows the sharers for L2 block with tag 0x30c0, obtained by clicking on the left “+1”
label. The pop-up window shows that the upper-level cache cpu-l1-0 is the only sharer of the block.
The owner is set also to cpu-l1-0, meaning that this cache has an exclusive copy of it that can be used
for write access. Figure 11.8(b) shows the set of in-flight accesses for the block, botained by clicking
on the right “+1” label. In the example, only access A-10665 is in-flight for this block. The access also
appears in the top panel of in-flight accesses.
Detailed information of an access can be obtained by clicking on its corresponding label on the top
panel of a memory module, as shown in Figure 11.9. The history of the access is completely shown in
the State log field, including the absolute cycle number for each access event occurrence, cycle
number relative to the current cycle, as selected in the main cycle bar, and current event transition for
the access.

151

a) Sharers and owner of the block in the
higher-level cache. b) In-flight accesses on the block.

Figure 11.8: Pop-up windows showing sharers of a block in the higher cache level, and in-flight accesses.
Windows show up after clicking on the labels in the columns adjacent to each block’s tag and state.

Figure 11.9: Pop-up window showing the properties and log of an in-flight memory access. The window
shows up after clicking on the access label located in the access panel.

152

Chapter 12

M2S-Cluster: Launching Massive Simula-
tions

12.1 Introduction
M2S-Cluster is a system to launch simulations automatically using a set of benchmarks on top of
Multi2Sim. The tool works on an infrastructure composed of a client Linux-based machine and a
server formed of several compute nodes, using the condor framework [16] as a task scheduling
mechanism. M2S-Cluster simplifies the routine task of launching sets of simulations with a single
command-line tool that communicates the client and server.

12.2 Requirements
Figure 12.1 shows a block diagram representing a system with the ability to run M2S-Cluster. The
system has the following configuration and hardware/software requirements:

• Client machine used to manage simulation executions. This is the Linux-based user’s local
working machine. Package subversion needs to be installed for availability of command-line tool
svn. The name of the client machine is referred to as CLIENT hereafter.

• Server machine (cluster of machines) composed of a front-end and several back-ends, all of
them sharing the same file system through, for example, NFS (network file system). The server

Figure 12.1: Representation of a system running M2S-Cluster.

153

front-end needs an installation of the GNU Autotools (commands aclocal, autoconf, and
automake), the subversion tool (command svn), and the distributed task scheduler condor
(commands condor_submit, condor_q, condor_status). The server machine acting as a front-end
for all server computing nodes is referred to as SERVER below.

• The user login name must be the same in CLIENT and SERVER. Also, the user in CLIENT needs to
have a key-less access to SERVER through an ssh connection, based on a private/public key
configuration. The following sequence of commands can be used to set up key-less login through
ssh:

user@CLIENT:~$ ssh-keygen -t rsa
user@CLIENT:~$ scp .ssh/id_rsa.pub SERVER:
user@CLIENT:~$ ssh SERVER

user@SERVER:~$ mkdir -p .ssh
user@SERVER:~$ cat id_rsa.pub >> .ssh/authorized_keys
user@SERVER:~$ rm id_rsa.pub
user@SERVER:~$ exit

After running this code, the user should make sure that command ssh SERVER, run at CLIENT,
connects to the server machine without prompting for a password.

12.3 Installation
M2S-Cluster is composed of three different types of packages, called the client kit, the server kit, and
the benchmark kits. The client kit is installed in CLIENT, while the server and benchmark kits are
installed in SERVER. Installations only involve downloading SVN repositories on the home folders,
without the need for root access privilege in the client or server machines.

Installation Steps
Follow the indicated steps to install each component of M2S-Cluster:

• On the client machine, type the following command on the home folder to install the client kit:

user@CLIENT:~$ svn co http://multi2sim.org/svn/m2s-client-kit

• On the server machine, type the following command to install the server kit:

user@SERVER:~$ svn co http://multi2sim.org/svn/m2s-server-kit

• Finally, the benchmark kits need to be installed also on SERVER, using one separate command per
benchmark kit that will be used for simulations. The complete list of available benchmark kits is
listed on the Multi2Sim website. For example, the AMDAPP 2.5 benchmark suite for Evergreen
can be installed with the following command:

user@SERVER:~$ svn co http://multi2sim.org/svn/m2s-bench-amdapp-2.5-evg

Only those benchmarks provided for free by their developers are publicly available on the
Multi2Sim SVN server. Commercial benchmarks, such as SPEC2006, only include statically
pre-compiled executables, omitting data files. Table 12.1 lists all benchmark kits publicly
available on M2S-Cluster.

154

amdapp-2.5-evg AMD OpenCL benchmarks for Evergreen (v. 2.5)
amdapp-2.5-si AMD OpenCL benchmarks for Southern Islands (v. 2.5)
amdapp-2.7-evg AMD OpenCL benchmarks for Evergreen (v. 2.7)
minibench Small benchmarks to test basic Multi2Sim functions
parsec-2.1 PARSEC parallel benchmarks based on pthread and OpenMP (v. 2.1)
rodinia OpenCL Rodinia benchmark suite
spec2006 SPEC 2006 benchmarks (restricted)
splash2 SPLASH-2 parallel benchmarks based on pthread

x86-sse Regression tests for x86 SSE instructions

Table 12.1: List of benchmark suites available on M2S-Cluster.

Keeping Repositories up to Date
The M2S-Cluster project is updated progressively by several developers, who might require all new
changes to be applied to all M2S-Cluster repositories simultaneously for compatibility. To guarantee
correct behavior, scripts launching new simulations on servers first check that all repositories are up to
date by retrieving the latest version information from the SVN server. If any repository is out of date
in the home folder of either CLIENT or SERVER, a warning message will notify this fact. To update an
already downloaded repository, command svn update should be run on all repositories, including client,
server, and benchmark kits.

user@CLIENT:~/m2s-client-kit$ svn update
user@SERVER:~/m2s-server-kit$ svn update
user@SERVER:~/m2s-bench-amdapp-2.5-evg$ svn update
[...]

12.4 The Client Tool m2s-cluster.sh

M2S-Cluster is managed in a centralized manner by means of shell script
CLIENT:∼/m2s-client-kit/bin/m2s-cluster.sh, which is part of M2S-Cluster’s client kit. If run without
arguments, the tool shows a help message listing all possible command-line options, for quick
reference. The first expected argument is a command, followed by a variable sequence of arguments
dependent on the command itself. The following sections define the behavior of m2s-cluster.sh for
each possible command.

Command create

Syntax:

m2s-cluster.sh create <cluster>

Create a new cluster of simulations (also called jobs). Creating a cluster is the first step to run
simulations; then the cluster is populated with jobs, which will be later submitted to the server. The
name given in argument <cluster> is used in subsequent commands to refer to this cluster. A directory
hierarchy is created in the server machine to store data for the cluster execution at
SERVER:∼/m2s-server-kit/run/<cluster>/. The initial state of the cluster is Created.

155

Command add

Syntax:

m2s-cluster.sh add <cluster> <job_name> [<benchmarks>] [<options>]

Add a new job to the cluster, where <job_name> is the identifier of the new job. The job name can
contain slash (/) characters. The name determines the location in the server kit where the job’s
temporary files are stored, as expressed by path SERVER:∼/m2s-server-kit/run/<cluster>/<job_name>/.
Argument <benchmarks> is the list of workloads to be run as different contexts on top of the same
Multi2Sim simulation. Each workload will be passed automatically by M2S-Cluster as a different
section [Context XXX] of the context configuration file (see Section 1.5). Each benchmark is given as a
pair <suite>/<benchmark> (e.g., splash2/fft). Notice that the name given in <suite> omits the
m2s-bench- prefix used in the corresponding benchmark kit. For each benchmark suite used here, the
corresponding benchmark kit needs to be installed in the server machine (e.g.,
SERVER:∼/m2s-bench-splash2).
The following optional arguments can be given:

• -p <num_threads>

If the first benchmark in the list accepts a variable number of threads, the value given in
<num_threads> is used. More specifically, this value replaces variable $NTHREADS in file
benchmark.ini for the corresponding workload and benchmark kit (see Section 12.6).

• ––send <file>

Send an additional file to be included in the working directory of the simulation execution. This
option is useful to send configuration files for Multi2Sim. To send multiple files, use double
quotes (e.g., ––send "mem-config x86-config").

• ––sim-args <args>

Additional arguments for the simulator. This option can be used, for example, to make
Multi2Sim consume the configuration files previously sent with option ––send. Use double quotes
if the command sent to Multi2Sim contains any space character (e.g., ––sim-args "–mem-config

mem-config").
When adding options that make Multi2Sim generate output reports, the file name of these
reports should start with prefix report- (e.g., ––sim-args "–x86-report report-pipeline"). The
reason is that a subsequent call to command m2s-cluster.sh import will automatically import all
files generated with this prefix.

• ––bench-args <args>

Additional arguments for the first benchmark in the list. The Args variable in section [Context 0]

of the automatically created context configuration file will be composed of the default
arguments for the benchmark followed by the additional arguments specified in this option. Use
double quotes when there is more than one argument (e.g., ––bench-args "-x 16 -y 16").

• ––data-set <set>

For those benchmarks providing several datasets, this argument specifies which one to use. The
dataset is Default if this option is not specified. All datasets supported for a benchmark are
listed as sections of the benchmark.ini file in the corresponding benchmark kit (see Section 12.6).

156

Command submit

Syntax:

submit <cluster> [<user>@]<server>[:<port>] [<options>]

Submit the cluster to the server and start its execution, automatically fetching and building a copy of
Multi2Sim from its official SVN repository. Optional argument <port> specifies the port for SSH
connections (22 is assumed by default). Argument <user> can be specified if the user names in the
client and server differ. After running this command, a cluster transitions to state Submitted. A cluster
must be in state Created, Completed, or Killed for it to be (re-)submitted. The following additional
arguments can be used:

• -r <revision>

Multi2Sim SVN revision to use for the cluster execution. If this option is omitted, the latest
SVN update will be fetched automatically from the Multi2Sim server.

• ––tag <tag>

If this option is specified, the simulator source code is fetched from the
multi2sim/tags/multi2sim-<tag> directory, containing a stable distribution. If the option is
omitted, the code is fetched from the development trunk at multi2sim/trunk.

• ––configure-args <args>

Arguments to be passed to the configure script when building the fetched Multi2Sim source
code. Use double quotes for multiple arguments. For simulations using non-tested code, it is
recommended to at least activate the debug mode with option ––configure-args "–enable-debug".

• ––exe <file>

Multi2Sim executable file to be used for simulations. This option overrides the default behavior
of fetching a Multi2Sim version for the SVN repository. Instead, it allows the user to specify a
custom version of the simulator. Options -r, ––tag, and ––configure-args are ignored if option
––exe is used.
The user should make sure that the executable can run correctly on the server environment.
Preferably, the executable should be created through a compilation on the server, or the
executable should be the cached file generated with a previous call to option ––exe-dir.

• ––exe-dir <dir>

Directory in the local machine containing the Multi2Sim source code to be used for simulations,
instead of a version of the official SVN repository. Before launching the cluster, this code is sent
to the server and compiled. A copy of the binary created in the server is also imported and
cached in the client machine. To avoid the remote compilation overhead, a future cluster can
reuse this binary by means of option ––exe instead. Options -r, ––tag, and ––configure-args are
ignored if option ––exe-dir is used.

Command state

Syntax:

m2s-cluster.sh state <cluster> [-v]

Print the current state of a cluster. Additional information about the cluster is printed if optional flag
-v is specified. The cluster can be in any of the following states:

157

• Invalid. The cluster does not exist.
• Created. The cluster has been created, but not submitted to the server yet.
• Submitted. The cluster has been submitted to the server, and is currently running. Additional
information is attached to this state when flag -v is used.

• Completed. All jobs associated with the cluster have completed execution in the server.
• Killed. The cluster has been killed before completing execution with command m2s-cluster.sh

kill.

Command wait

Syntax:

m2s-cluster.sh wait <cluster1> [<cluster2> [...]]

Wait for a list of clusters to finish execution. The command finishes once all clusters are in state
Created, Completed, Killed, or Invalid. The server is queried periodically to obtain the latest state for
all clusters.

Command kill

Syntax:

m2s-cluster.sh kill <cluster>

Kill all jobs associated with the cluster in the server. The cluster must be in state Submitted for this
operation to be valid. After killing the cluster, it transitions to state Killed.

Command import

Syntax:

m2s-cluster.sh import <cluster> [-a]

Import all output files and simulation reports generated by Multi2Sim for all jobs in the cluster. A
directory hierarchy is created in the client machine at CLIENT:∼/m2s-client-kit/result/<cluster>/, with
one subdirectory per job containing its associated files. This directory hierarchy is identical to that
created in the server for the execution of the cluster at SERVER:∼/m2s-server-kit/run/<cluster>/, but
the former only contains simulation output files. The selection of which files need to be imported is
done by analyzing their name and selecting the following:

• sim.out – Output of the benchmark running on Multi2Sim.
• sim.ref – Reference output of the benchmark. This file is originally provided by the benchmark

in some cases, and can be useful to check simulation correctness by comparing it with sim.out.
• sim.err – Simulator output, usually containing a summary of the statistic reports.
• XXX-report – All files with the -report suffix are imported.
• XXX-config – Configuration files with the -config suffix are also imported.

If optional flag -a is specified, all files in the running directory are imported, including benchmark
executable and data files, and regardless of their names. The cluster must be in state Submitted,
Completed, or Killed.

158

Command remove

Syntax:

m2s-cluster.sh remove <cluster>

Remove all information about the cluster and its jobs. The entire directory hierarchy associated with
the cluster, both in the server and client, is deleted at the following locations:

SERVER:~/m2s-server-kit/run/<cluster>
CLIENT:~/m2s-client-kit/result/<cluster>

A cluster must be in state Created, Completed, or Killed. Querying the cluster state after it is removed
returns a virtual state Invalid.

Command list

Syntax:

m2s-cluster.sh list [<cluster>]

If no value is given for argument <cluster>, a list of all existing clusters is printed. If the name of a
cluster is given, all jobs added to <cluster> are listed. Following the listing, the standard error output
shows a summary of the printed clusters or jobs.

Command list-bench

Syntax:

m2s-cluster.sh list-bench [<user>@]<server> [<suite>]

If optional argument <suite> is omitted, this command lists the benchmark kits available in the server.
If a benchmark suite is given, the command lists the benchmarks available in the server for that suite.

Command server

Syntax:

m2s-cluster.sh server <cluster>

Print the server where a cluster is or was running. The syntax of the output string is
[<user>@]<server>[:<port>], where the port is only specified if other than 22. The cluster must be in
state Submitted, Completed, or Killed.

12.5 Automatic Creation of Clusters: Verification Scripts
Clusters of simulations can be created automatically using scripts that launch Multi2Sim verification
tests, architectural exploration experiments, or any other predefined set of simulations. These scripts
are referred to in this section as verification scripts. They use a set of calls to m2s-cluster.sh to create,
add jobs to, and submit a cluster, in such a way that the specific set of jobs forming the cluster is
abstracted from the user.
To ease usage compatibility of verification scripts, this section presents a standard interface to all of
them. By following this common interface, a verification script can either spawn its own threads,

159

launch secondary verification scripts, or in turn be called by other verification scripts. Ultimately, any
verification script is associated with one or more clusters, directly or indirectly created, whose state
can be easily queried or modified through the proposed interface.
A set of standard verification scripts is currently available in the client kit at
CLIENT:∼/m2s-client-kit/remote-tests. For example, script test-amdapp-2.5-evg-emu.sh launches the
emulation of the AMDAPP-2.5 benchmark suite for Evergreen, runs a validations on the benchmark
outputs, and plots emulation time and other statistics.
Similarly to script m2s-cluster.sh, the interface of a verification script includes a command as its first
argument—an execution without arguments will just print a help message. The following sections
define the behavior for each command.

Command submit

Syntax:

<script_name>.sh submit [<user>@]<server>[:<port>] [<options>]

Create the set of one of more clusters associated with the verification script, fill them with the
corresponding jobs, and launch the clusters in the server machine specified in <server>. The optional
arguments for this command do not differ from command m2s-cluster.sh submit. In fact, these options
are internally passed to m2s-cluster.sh once it is time to submit the cluster. The options are:

• -r <revision>. Multi2Sim SVN revision to be used in SERVER.
• ––tag <tag>. Tag directory to be used (Multi2Sim trunk used if not specified).
• ––configure-args <args>. Arguments for the configure script.
• ––exe <file>. Multi2Sim custom executable.
• ––exe-dir <dir>. Multi2Sim custom directory.

Command kill

Syntax:

<script_name>.sh kill

Kill all clusters associated with the verification script. This command recursively calls the kill

command of secondary verification scripts, and runs m2s-cluster.sh kill for those clusters explicitly
created by this script that are in state Submitted.

Command state

Syntax:

<script_name>.sh state

Return the state of the verification script. This state is computed as a combination of the cluster
states and the states of secondary scripts, using the following recursive definitions:

• Invalid. All clusters associated with this verification script, as well as all secondary verification
scripts, are in state Invalid (i.e., do not exist).

• Submitted. At least one of the clusters associated with this verification script, or alternatively a
secondary verification script, is in state Submitted.

160

• Completed. All clusters associated with this verification script, as well as all secondary verification
scripts are in state Completed.

• Killed. At least one of the clusters associated with this verification script, or alternatively a
secondary verification script, is in state Killed. An exception is the fact that any associated
cluster or secondary verification script is in state Submitted; in this case, the reported state is
Submitted instead.

Command wait

Syntax:

<script_name>.sh wait

Wait for all associated clusters and secondary verification scripts to reach state Completed. A summary
of the global state is reported in a string periodically updated in real time.

Command process

Syntax:

<script_name>.sh process [-f]

Import output files generated during the execution of clusters associated with this and secondary
verification scripts. File importation is performed by calling command m2s-cluster.sh import for every
associated cluster, and command <sec_script_name>.sh process for every secondary script. Output files
are then processed by generating plots or analyzing results, and a verification error code is return (0
for passed, non-zero for failed verification). Failed verifications are propagated recursively through
secondary verification scripts. Unless flag -f is specified, output files are imported only when a local
copy of the results is not present in the client (i.e., the clusters and secondary scripts are imported for
the first time).

Command remove

Syntax:

<script_name>.sh remove

Remove all clusters created by this verification script, as well as secondary verification scripts. The
server and client copies of the execution and result directories are deleted, using command
m2s-cluster.sh remove for each cluster. The verification script state must be Completed or Killed.

12.6 Benchmark Kits
Each benchmark suite in M2S-Cluster is provided as a separate repository with prefix m2s-bench-.
When simulation of a given benchmark is launched, the benchmark kit containing that workload needs
to be installed, and updated to the latest SVN version, at the top level of the user’s home directory on
SERVER. Benchmark kits are available as public SVN repositories, as well as software packages on
Multi2Sim’s website. For those benchmarks holding commercial licenses, only statically compiled
binaries are provided.

161

Figure 12.2: Structure of a directory containing a benchmark kit.

Figure 12.2 shows the directory structure followed by all benchmark suites in M2S-Cluster. Using
PARSEC-2.1 as an example, the parent directory m2s-bench-parsec-2.1 contains one subdirectory per
workload: blackscholes, bodytrack, canneal, etc. The regular (non-directory) files in the benchmark
directory are those files required for the benchmark execution that are irrespective of the selected
dataset. These files are automatically copied by M2S-Cluster to a local execution directory when
simulations are submitted.
The benchmark directory also contains a set of subdirectories, one for each dataset supported by the
benchmark. For PARSEC-2.1, datasets small, medium, and large are provided. When M2S-Cluster
launches a benchmark, the contents of the dataset directory, as requested by the user through
command m2s-cluster.sh add –data-set, are copied together with the rest of the workload’s regular
files, and at the same level as the benchmark executable.
Finally, a file named benchmark.ini is present in every benchmark’s directory, containing additional
information for its execution. An example of the benchmark.ini file contents is presented in the
following listing, for benchmark blackscholes:

162

[Default]
Exe = blackscholes
Args = $NTHREADS in_16K.txt prices.txt
Data = data-medium

[Small]
Exe = blackscholes
Args = $NTHREADS in_4K.txt prices.txt
Data = data-small

[Medium]
Exe = blackscholes
Args = $NTHREADS in_16K.txt prices.txt
Data = data-medium

The file follows the INI file format, where each section corresponds to a dataset, with the same name
as the corresponding subdirectory in the benchmark directory hierarchy. A section named [Default] is
present for all benchmarks, used as the description for the benchmark execution when option
––data-set is omitted from command m2s-cluster.sh add. The possible variables for each section are:

• Exe. Name of the executable file of the benchmark, as found at the top-level of the benchmark
directory.

• Args. Arguments used for the benchmark execution. Variable $NTHREADS can be used as an
argument, which will be replaced during the execution of command m2s-cluster.sh add by the
value specified in option -p, or by 1 if this option is absent.

• Env. List of environment variables added for the benchmark simulation. Variable $NTHREADS can
be used here as well with the same purpose.

• Data. Dataset used for the benchmark execution. The contents of the directory with the same
name are copied during the execution of command m2s-cluster.sh submit to a temporary
execution directory for the benchmark, together with the benchmark executable and other
regular files.

12.7 Usage Examples

Tying It Out
As a first example, and assuming a successful installation of M2S-Cluster as presented in Section 12.3,
let us target the distributed execution of a set of two simulations composed of benchmark
MatrixMultiplication from the Evergreen AMDAPP-2.5 suite and benchmark fft from the SPLASH2
suite. In this context, the term cluster will be used hereafter referring to a group of independent
executions of Multi2Sim on SERVER, each of which will be called, in turn, a job.
For all following examples, it is also assumed that all benchmark kits (directories with prefix
m2s-bench-) needed by simulations are present and up to date on SERVER. In this particular case,
directories m2s-bench-amdapp-2.5-evg and m2s-bench-splash2 must be present under the user’s home
directory on the server machine. Besides these considerations, the management of the distributed
simulation is fully administrated locally at the user’s client machine, by means of the shell script
m2s-cluster.sh located in user@CLIENT:∼/m2s-client-kit/bin. For simplicity, the code listings below
assume that this directory is part of the PATH environment variable, allowing the script to be easily
invoked through a command line that omits its absolute path in the command line.
First, a cluster of simulations, named my-cluster, is created.

163

user@CLIENT:~$ m2s-cluster.sh create my-cluster
creating cluster ’my-cluster’ - ok

The two mentioned benchmarks are added to the cluster as two different jobs, named job-0 and job-1,
respectively. Benchmarks are identified by the name of the benchmark suite (omitting the m2s-bench-

prefix), followed by the benchmark name itself, and separated by a forward slash “/”.

user@CLIENT:~$ m2s-cluster.sh add my-cluster job-0 amdapp-2.5-evg/MatrixMuliplication
queuing job ’job-0’ to cluster ’my-cluster’ - job 0 - ok
user@CLIENT:~$ m2s-cluster.sh add my-cluster job-1 splash2/fft
queuing job ’job-1’ to cluster ’my-cluster’ - job 1 - ok

Once the cluster and its components have been defined, it is submitted for remote execution in SERVER.

user@CLIENT:~$ m2s-cluster.sh submit my-cluster SERVER
Checking Multi2Sim trunk, SVN Rev. 1001 - up to date - ok
submitting cluster ’my-cluster’ - sending files - condor id 14349 - 2 jobs submitted - ok

Upon the absence of additional options in the execution of command m2s-cluster.sh submit, the latest
SVN revision of Multi2Sim is fetched from its official repository and built in the server. Despite an
initially lasting compilation of the simulator, the submission of subsequent clusters is sped up as the
generated binary is cached in SERVER.
The state of the submitted cluster can be checked from the client machine. If the returned state has
not transitioned from Submitted to Completed yet, the user can wait for its finalization through a
blocking call.

user@CLIENT:~$ m2s-cluster.sh state my-cluster
Submitted
user@CLIENT:~$ m2s-cluster.sh wait my-cluster
1 total, 0 created, 1 submitted, 0 completed, 0 killed, 0 invalid (as of 11:01am)

When the cluster completes, simulation results are obtained.

user@CLIENT:~$ m2s-cluster.sh import my-cluster
importing cluster output - create package - import - ok

These results are automatically made available in path CLIENT:∼/m2s-client-kit/result/my-cluster. A
listing of the directory contents shows two internal subdirectories, one for each job in the cluster.
Further exploring the contents of the subdirectory associated with a job, for example job-0, the
standard output and standard error output are found in files sim.out and sim.err, respectively.
Once results become useless and can be safely discarded, the cluster is removed, completely clearing
the associated directory in CLIENT as well as all temporary files originated in SERVER during its execution.

user@CLIENT:~$ m2s-cluster.sh remove my-cluster
removing cluster ’my-cluster’ - removing cluster in server - ok

Using a Modified Copy of Multi2Sim
By default, M2S-Cluster uses a copy of Multi2Sim’s source code from the official SVN repository. It is
common, however, that a user modifies the source code, and then launches a set of simulations
running on the generated private binary m2s. Command-line options ––exe-dir and ––exe in script
m2s-cluster.sh serve this specific purpose. In the following example, let us assume that a private

164

modified copy of Multi2Sim is located at user@CLIENT:∼/project/multi2sim, used to run a cluster with
benchmarks fft, lu, and ocean from the SPLASH2 benchmark suite. The following commands create
the cluster:
user@CLIENT:~$ m2s-cluster.sh create my-cluster
creating cluster ’my-cluster’ - ok

user@CLIENT:~$ m2s-cluster.sh add my-cluster job-0 splash2/fft
queuing job ’job-0’ to cluster ’my-cluster’ - job 0 - ok

user@CLIENT:~$ m2s-cluster.sh add my-cluster job-1 splash2/lu
queuing job ’job-1’ to cluster ’my-cluster’ - job 1 - ok

user@CLIENT:~$ m2s-cluster.sh add my-cluster job-2 splash2/ocean
queuing job ’job-2’ to cluster ’my-cluster’ - job 2 - ok

The cluster is submitted to the server using option ––exe-dir, with its argument pointing to the parent
directory of the private copy of Multi2Sim.

user@CLIENT:~$ m2s-cluster.sh submit my-cluster SERVER --exe-dir /home/user/project/multi2sim
submitting cluster ’my-cluster’ - building

[cached in ’/home/user/m2s-client-kit/tmp/m2s-remote-exe’]
- sending files - condor id 14352 - 3 jobs submitted - ok

If building the simulator fails on the server, the cluster is not submitted, and the compilation log is
dumped in the standard output. Upon success, a copy of the executable generated in the server is
cached locally in the temporary directory of the client kit, and an output message shows the path
where this executable can be accessed (/home/ubal/m2s-client-kit/tmp/m2s-remote-exe). This
executable can be passed later with another cluster submission (option ––exe) to avoid the overhead of
rebuilding the code in the server.

user@CLIENT:~$ m2s-cluster.sh wait my-cluster
1 total, 0 created, 0 submitted, 1 completed, 0 killed, 0 invalid (as of 11:04am)

user@CLIENT:~$ m2s-cluster.sh submit my-cluster SERVER \
--exe /home/user/m2s-client-kit/tmp/m2s-remote-exe

submitting cluster ’my-cluster’ - sending files - condor id 14353 - 3 jobs submitted - ok

Transferring Configuration Files and Reports
The input files consumed by Multi2Sim, as well as the output files generated by it, need to be
transferred from CLIENT to SERVER and vice versa. In the following example, a cluster with one single
simulation is created, using benchmark fft from the SPLASH2 suite, where input file
user@CLIENT:∼/Documents/x86-config is used as the x86 pipeline configuration file, and a detailed x86
pipeline report is obtained from the simulation. The example also illustrates how to pass arguments to
Multi2Sim’s command line by using the ––sim-arg option in M2S-Cluster.

165

user@CLIENT:~$ m2s-cluster.sh create my-cluster
creating cluster ’my-cluster’ - ok

user@CLIENT:~$ m2s-cluster.sh add my-cluster job-0 splash2/fft \
--sim-arg "--x86-sim detailed --x86-config x86-config --x86-report report-pipeline" \
--send /home/user/Documents/x86-config

queuing job ’job-0’ to cluster ’my-cluster’ - job 0 - ok

user@CLIENT:~$ m2s-cluster.sh submit my-cluster SERVER
Checking Multi2Sim trunk, SVN Rev. 1001 - up to date - ok
submitting cluster ’my-cluster’ - sending files - condor id 14354 - 1 jobs submitted - ok

In the m2s-cluster.sh add command above, three options are specified as command-line arguments for
Multi2Sim: one option to activate a detailed simulation, a second option to use the given x86 pipeline
configuration file, and a third option to dump the x86 pipeline report to a file called report-pipeline.
For the last option, notice the need to make the output file have the report-XXX prefix; this allows it to
be later imported automatically with command m2s-cluster.sh import. Option ––send points to the x86
pipeline configuration file to be sent to the server before simulation starts.
Once the cluster has been submitted, we wait for its finalization, and import the simulation results.

user@CLIENT:~$ m2s-cluster.sh wait my-cluster
1 total, 0 created, 0 submitted, 1 completed, 0 killed, 0 invalid (as of 03:54pm)

user@CLIENT:~$ m2s-cluster.sh import my-cluster
importing cluster output - create package - import - ok

Simulation results are retrieved in CLIENT:∼/m2s-client-kit/result, under a subdirectory named after
the imported cluster (my-cluster). The latter directory contains, in turn, one subdirectory for each job
that is part of the cluster (in this case, only job-0). Finally, the job directory contains its associated
simulation results imported from the server, as observed next:

user@CLIENT:~$ cd m2s-client-kit/result/my-cluster/job-0
user@CLIENT:~/m2s-client-kit/result/my-cluster/job-0$ ls
ctx-0 report-pipeline sim.err sim.out

166

Chapter 13

Multi2C: The Kernel Compiler

Multi2Sim 4.2 integrates Multi2C, an open-source GPU kernel compiler producing final binaries
compatible with state-of-the-art GPUs. Multi2C can be invoked with command m2c, which should be
built together with the rest of the simulator. Multi2C is a modular compiler composed of the following
stages:

• A compiler front-end translates a GPU kernel written in a high-level language to an LLVM 3.1
bitcode representation. The front-end currently supports a subset of OpenCL C, and will be
extended to CUDA in the future.

• A compiler back-end translates LLVM bitcode directly to a GPU-specific assembly code (ISA). A
Southern Islands back-end is now partially supported, and a Fermi back-end is in progress.

• An assembler reads plain-text assembly code and produces a final kernel binary, which can run
both on Multi2Sim and on real GPUs. A Southern Islands assembler is currently highly
supported, and a Fermi assembler is in progress.

Figure 13.1 summarizes the progress on each compiler stage. Each compilation stage can be invoked
independently in an explicit manner, or implicitly as part of the complete compilation chain. Multi2C
is invoked with the following command:

m2c [<options>] <source1> [<source2> ...] [-o <output>]

In its basic execution mode, Multi2C takes one or more GPU kernel source files, and produces one
kernel binary for each of them. By default, the output file has the same name as the input file,
replacing its extension with .bin. Unless otherwise specified, the sources are interpreted as OpenCL

Figure 13.1: Multi2C compiler stages and current progress. Green, yellow, and red boxes represent high,
medium, or low support in the latest release.

167

kernel sources, and the target architecture is Tahiti (Southern Islands).
Option -o can optionally specify an output file name for the generated kernel, only valid if the list of
sources contains only one file. Argument <options> is a list of zero or more arguments specifying a
certain behavior of Multi2C. The possible values for these options are listed throughout the rest of the
chapter.

13.1 The OpenCL Compiler Front-End
The OpenCL front-end takes a plain-text OpenCL GPU kernel (.cl file) as an input and produces an
LLVM 3.1 bitcode binary as an output (.llvm file). This module of Multi2C is built conditionally
depending on the presence of tools flex, bison, and LLVM 3.1 on your system. It also relies on external
tool cpp as a C pre-processor to translate compiler directives in a first pass on the source code.

Command-Line Options
The following command-line options are related with the OpenCL front-end:

• Option ––cl2llvm is used to make Multi2C behave as a stand-alone OpenCL front-end. The
source files passed in the rest of the command line are interpreted as OpenCL GPU kernel
sources, and the output files are LLVM 3.1 bitcode binaries. Each LLVM binary as the same
name as the corresponding source, replacing its extension by .llvm.

• Option -o <file>, when used together with ––cl2llvm, is used to overwrite the name of the
destination file, in the case that only one kernel source was given in the list of input files.

• Option -D <macro>=<value> is used to define additional macros for the pre-processing stage. This
option can appear multiple times in the command line. Using this option is equivalent to adding
#define <macro> <value> lines in the beginning of all source files.

Example
The following code shows an implementation of the vector addition GPU kernel in OpenCL:

__kernel void vector_add(
__read_only __global int *src1,
__read_only __global int *src2,
__write_only __global int *dst)

{
int id = get_global_id(0);

dst[id] = src1[id] + src2[id];
}

Assuming that this code is stored in a file name vector-add.cl, the following sequence of commands
can be used to i) run the OpenCL front-end and produce a binary LLVM file named vector-add.llvm,
and ii) disassemble the LLVM bitcode and dump the output into stdout:

$ m2c --cl2llvm vector-add.cl
$ llvm-dis-3.1 vector-add.llvm -o -

168

13.2 The Southern Islands Back-End
The Southern Islands back-end takes an LLVM 3.1 bitcode binary as an input (.llvm file) and produces
plain-text Southern Islands assembly code (.s file) as an output. This module of Multi2C is compiled
conditionally depending on the presence of the LLVM 3.1 library on your system.
The Southern Islands back-end uses a structural analysis algorithm [17] to convert the LLVM control
flow graph into a control tree for the generation of SIMD code. This algorithm identifies control flow
structures, such as if-then-else, do-while, or for loops, and emits instructions for manipulation of
Southern Islands active masks and active mask stacks.

Command-line options
The following command-line options of m2c are related with the Southern Islands back-end:

• Option ––llvm2si makes Multi2C behave as a stand-alone Southern Islands assembler. Input files
are interpreted as LLVM bitcode binaries, and their content is translated to produce plain-text
assembly files. Output files are created with the same name as input files, replacing their
extension with .s.

• Option -o, when used together with ––llvm2si, is used to redefine the output file name. This
option is valid only when one single input file is given.

• Option ––ctree-debug <file> is used to dump information related with the structural analysis
algorithm. Each conversion step from the control flow graph into the control tree is dumped into
<file>.

• Option ––ctree-config <file> is used for debugging purposes of the structural analysis algorithm.
It specifies a configuration file (INI file format) with commands to load artificial control flow
graphs, apply conversions on them, and verify the results. This option must be used without any
other options.

Example
To illustrate the behavior of the stand-alone Southern Islands back-end, let us start with the plain-text
source code of a vector addition kernel in LLVM:

; ModuleID = ’vector-add.llvm’

define void @vector_add(i32 addrspace(1)* %src1, \
i32 addrspace(1)* %src2, \
i32 addrspace(1)* %dst) {

block_0:
%tmp_0 = call i32 @get_global_id(i32 0)
%tmp_3 = getelementptr i32 addrspace(1)* %dst, i32 %tmp_0
%tmp_6 = getelementptr i32 addrspace(1)* %src1, i32 %tmp_0
%tmp_7 = load i32 addrspace(1)* %tmp_6
%tmp_10 = getelementptr i32 addrspace(1)* %src2, i32 %tmp_0
%tmp_11 = load i32 addrspace(1)* %tmp_10
%tmp_12 = add i32 %tmp_7, %tmp_11
store i32 %tmp_12, i32 addrspace(1)* %tmp_3
ret void

}

declare i32 @get_global_id(i32) nounwind

169

Assuming that this code is contained in a file named vector-add.ll, the following sequence of
command can be used to i) compile the LLVM source code into an LLVM bitcode binary named
vector-add.llvm, and ii) read the LLVM bitcode and produce a Southern Islands plain-text assembly
file named vector-add.s.
$ llvm-as-3.1 vector-add.ll -o vector-add.llvm
$ m2c --llvm2si vector-add.llvm

13.3 The Southern Islands Assembler
The Southern Islands Assembler is the last part of the compilation chain, which takes a plain-text file
with assembly code as an input, and generates a Southern Islands kernel binary. This part of Multi2C
is built conditionally with the rest of the Multi2Sim sources depending on the presence of the flex and
bison tools in your system.
To use Multi2C as a stand-alone Southern Islands assembler, the following command must be
executed:
m2c --si-asm -m <device> <file>

Flag –m specifies the type of device for which the assembly file should be compiled. The available
options for devices are Tahiti, Pitcairn, and CapeVerde. If the –m flag is omitted, Tahiti is used by
default. Argument <file> is the plain-text file containing the source code, typically with the .s

extension.
Multi2C defines a format for the assembly source file, composed of sections, assembler directives, and
assembly instructions. Comments can be inserted at any position of the source file using characters
“#” or “//”.
Section are groups of assembler directives or assembly instructions, starting with a section header (an
identifier preceded with a “.” character). For each kernel function encoded in the assembly file, there
are 5 possible sections, named .global, .args, .metadata, .text, and .data, each described next in detail.

Section .global
This section is used to specify the beginning of a new kernel function. The .global keyword should be
followed by the name of the kernel. This section has no content. It should be followed by the sections
presented next, which apply for the new kernel.

Section .metadata
This section is composed entirely of assembler directives specifying information needed for the final
binary creation. Each line contains a variable assignment, with the following options:

• <mem_scope> = <bytes>. These assignments are used to specify the number of bytes used for each
memory scope. The possible values for <mem_scope> are uavprivate, hwregion, and hwlocal. Field
<bytes> specifies the amount of memory in bytes.

• userElements[<index>] = <data_class> <api_slot> <reg>. This entry specifies the location of the
constant buffer table or the UAV table, among others. They are encoded in the binary as an
array, so an index must be provided in increasing order. Possible values for <data_class> are
IMM_CONST_BUFFER, PTR_CONST_BUFFER_TABLE, IMM_UAV, and PTR_UAV_TABLE. Field <reg> is the scalar
register or scalar register series where the runtime will place the requested value.

170

• FloatMode = <value>.
• IeeeMode = <value>.
• rat_op = <value>.
• COMPUTE_PGM_RSRC2:<field> = <value>. This variable specifies the value of a 32-bit register known

as the program resource. This register is composed of 11 different fields that can be assigned
separately. Possible values for <field> are:

– SCRATCH_EN (1 bit)
– USER_SGPR (5 bits)
– TRAP_PRESENT (1 bit)
– TGID_X_EN (1 bit)
– TGID_Y_EN (1 bit)
– TGID_Z_EN (1 bit)
– TG_SIZE_EN (1 bit)
– TIDIG_COMP_CNT (2 bits)
– EXCP_EN_MSB (2 bits)
– LDS_SIZE (9 bits)
– EXCP_EN (8 bits)

A sample metadata section might look like the following:

.metadata

uavprivate = 0
hwregion = 0
hwlocal = 0

userElements[0] = PTR_UAV_TABLE, 0, s[0:1]
userElements[1] = IMM_CONST_BUFFER, 0, s[2:5]
userElements[2] = IMM_CONST_BUFFER, 1, s[6:9]

FloatMode = 192
IeeeMode = 0

COMPUTE_PGM_RSRC2:USER_SGPR = 10
COMPUTE_PGM_RSRC2:TGID_X_EN = 1
COMPUTE_PGM_RSRC2:TGID_Y_EN = 1
COMPUTE_PGM_RSRC2:TGID_Z_EN = 1

Section .data
This section contains a sequence of declarations of initialized static memory regions for the kernel.
Each line in this section is formed of a data type followed by one or more constants of that type.
Possible data types are .float, .word, .half, and .byte. This is an example of a .data section:

.data
.word 1, 2, 3, 4
.float 3.14, 2.77
.byte 0xab

171

Section .args
This section declares the kernel arguments. A kernel argument can be a pointer, a vector of pointers, a
value, or a vector of values. All arguments are stored in constant buffer 1 at a specific offset from the
beginning of the buffer. These offsets have to maintain a 16-byte alignment.

• Pointer arguments are declared as follows:
<type>* <name> <offset> <options>

The supported data types are:

– i8 - 8 bit integer
– i16 - 16 bit integer
– i32 - 32 bit integer
– i64 - 64 bit integer
– u8 - 8 bit unsigned integer
– u16 - 16 bit unsigned integer
– u32 - 32 bit unsigned integer
– u64 - 64 bit unsigned integer
– float - 32 bit floating point value
– double - 64 bit floating point value

• Vectors of pointers have a similar format to pointer arguments except that the number of
elements in the vector must be specified. Vectors can have 2, 3, 4, 6, 8, or 16 elements. The
syntax is <type>[<num_elem>]* <name> <offset> <options>

• Field <options> is composed of zero or more of the following identifiers:

– The scope of the argument can be specified as uav<num> for a UAV in global memory, or as
hl for local memory. If no scope is given, uav12 is assumed by default.

– The access type can be specified as RW (read-write access), RO (read only acess), or WO

(write only access). If no access type is given, RW is assumed by default.

• The syntax used to declare a value argument is <type> <name> <offset>.
• Finally, arguments can be a vector of 2, 3, 4, 6, 8, or 16 values. The syntax is

<type>[<num_elem>] <name> <offset>

Section .text
This section contains the assembly instructions for the kernel, following the format specified in the
Southern Islands ISA documentation [18]. The features of the parser for this section have been added
by obtaining sample assembly codes for different kernels, using the native AMD compiler, dumping all
intermediate files (m2c ––amd ––amd-dump-all), and reading the ISA dump in the resulting .isa file.

Example
For reference, a complete source file is shown next for the vector addition kernel. This code can be
placed into a file vector-add.s, and then assembled with command m2c ––si-asm vector-add.s,
producing a final Southern Islands kernel binary in file vector-add.bin.

172

.global vector_add

.data
No data values are needed

.args
i32* src1 0 uav11 RO
i32* src2 16 uav12 RO
i32* dst 32 uav10 RW

.metadata

uavprivate = 0
hwregion = 0
hwlocal = 0

userElements[0] = PTR_UAV_TABLE, 0, s[2:3]
userElements[1] = IMM_CONST_BUFFER, 0, s[4:7]
userElements[2] = IMM_CONST_BUFFER, 1, s[8:1]

FloatMode = 192
IeeeMode = 0

COMPUTE_PGM_RSRC2:USER_SGPR = 12
COMPUTE_PGM_RSRC2:TGID_X_EN = 1

.text

s_buffer_load_dword s0, s[4:7], 0x04
s_buffer_load_dword s1, s[4:7], 0x18
s_buffer_load_dword s4, s[8:11], 0x00
s_buffer_load_dword s5, s[8:11], 0x04
s_buffer_load_dword s6, s[8:11], 0x08
s_load_dwordx4 s[8:11], s[2:3], 0x58
s_load_dwordx4 s[16:19], s[2:3], 0x60
s_load_dwordx4 s[20:23], s[2:3], 0x50
s_waitcnt lgkmcnt(0)
s_min_u32 s0, s0, 0x0000ffff
v_mov_b32 v1, s0
v_mul_i32_i24 v1, s12, v1
v_add_i32 v0, vcc, v0, v1
v_add_i32 v0, vcc, s1, v0
v_lshlrev_b32 v0, 2, v0
v_add_i32 v1, vcc, s4, v0
v_add_i32 v2, vcc, s5, v0
v_add_i32 v0, vcc, s6, v0
tbuffer_load_format_x v1, v1, s[8:11], 0 offen format: \

[BUF_DATA_FORMAT_32, BUF_NUM_FORMAT_FLOAT]
tbuffer_load_format_x v2, v2, s[16:19], 0 offen format: \

[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT]
s_waitcnt vmcnt(0)
v_add_i32 v1, vcc, v1, v2
tbuffer_store_format_x v1, v0, s[20:23], 0 offen format: \

[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT]
s_endpgm

13.4 The AMD Compiler Wrapper
The m2c tool can act as a command-line wrapper to access the OpenCL compiler installed natively on
a system, by adding option ––amd to the command line. For this option to be available, Multi2Sim

173

must have detected an installation of the APP SDK when it was built, as well as a correct installation
of the AMD Catalyst driver. If this software is not installed, m2c is still built correctly, but option ––amd

is not available.
When m2c ––amd is followed by a list of .cl source files, each file is individually compiled, producing a
kernel binary with the same name and the .bin extension. The target binary format is compatible with
an AMD GPU when loaded with clCreateProgramWithSource, as well as suitable for simulation on
Multi2Sim.

Compilation method
A vector-specific OpenCL compiler is provided as part of the OpenCL runtime libraries, and can usually
be accessed only when an OpenCL host program invokes function clCreateProgramWithSource at
runtime, followed by a call to clBuildProgram. However, the OpenCL interface can likewise be used
later to retrieve the kernel binary generated internally. For each .cl OpenCL C source file passed in
the command line, m2c follows these steps to produce a kernel binary:

• The content of the source file is read by m2c and stored in an internal buffer.
• The OpenCL platform and context are initialized, and an OpenCL device is chosen for
compilation.

• The buffer storing the kernel source is passed to a call to clCreateProgramWithSource. It is
subsequently compiled for the selected target device with a call to clBuildProgram.

• The resulting kernel binary is retrieved with a call to clGetProgramBuildInfo. A compilation log is
obtained with the same call, showing any possible compilation error messages.

Command-line options
The following command-line options in m2c are related with the AMD native compiler wrapper:

• Option ––amd is used to activate m2c’s functionality as the AMD native compiler wrapper. It must
be present whenever any of the following options is used. The ––amd option is incompatible with
any other option presented outside of this section.

• Option ––amd-list provides a list of all target devices supported by the AMD driver. These
devices do not necessarily match those OpenCL-compatible CPUs/GPUs installed on the system;
they are just possible targets for the compiler. Device identifiers shown in this list can be used as
arguments to option ––amd-device.
The following is an example of a device list, where the Southern Islands device is referred to as
Tahiti, the Evergreen device as Cypress, and the x86 device as Intel(R) Xeon(R).

174

$ m2c --amd --amd-list

ID Name, Vendor
---- --

0 Cypress, Advanced Micro Devices, Inc.
1 ATI RV770, Advanced Micro Devices, Inc.
2 ATI RV710, Advanced Micro Devices, Inc.
3 ATI RV730, Advanced Micro Devices, Inc.
4 Juniper, Advanced Micro Devices, Inc.
5 Redwood, Advanced Micro Devices, Inc.
6 Cedar, Advanced Micro Devices, Inc.
7 WinterPark, Advanced Micro Devices, Inc.
8 BeaverCreek, Advanced Micro Devices, Inc.
9 Loveland, Advanced Micro Devices, Inc.

10 Cayman, Advanced Micro Devices, Inc.
11 Barts, Advanced Micro Devices, Inc.
12 Turks, Advanced Micro Devices, Inc.
13 Caicos, Advanced Micro Devices, Inc.
14 Tahiti, Advanced Micro Devices, Inc.
15 Pitcairn, Advanced Micro Devices, Inc.
16 Capeverde, Advanced Micro Devices, Inc.
17 Devastator, Advanced Micro Devices, Inc.
18 Scrapper, Advanced Micro Devices, Inc.
19 Intel(R) Xeon(R) CPU W3565 @3.20GHz, GenuineIntel

--
20 devices available

• Option ––amd-device <device>[,<device2>...]. Target device(s) for the final binary. Each device
in the list can be either a numeric identifier, as presented with ––amd-list, or a word contained
uniquely in that device name. For example, options ––amd-device 19 and ––amd-device Intel are
equivalent, given the device list above. The following command compiles a vector addition
kernel and creates a Southern Islands binary:

$ m2c --amd --amd-device Tahiti vector-add.cl

Device 14 selected: Tahiti, Advanced Micro Devices
Compiling ’vector-add.cl’...

vector_add.bin: kernel binary created

When only one device is specified, the .bin output file is exactly that produced internally by the
AMD compiler. When multiple devices are specified, they are packed into a fat ELF binary by m2c

(see below). Notice that no space character should be included between device names in a list.
• Option ––amd-dump-all. Dump additional information generated during the compilation of the
kernel sources. This information is obtained in additional binary and text files, placed in two
directories prefixed with the same name as the <kernel>.cl source file.
The first directory is named <kernel>_amd_files, and contains intermediate compilation files
automatically generated by the AMD compiler (internally, this is done by adding flag -save-temps

as one of the arguments of clBuildProgram).
A second directory named <kernel>_m2s_files contains a post-processing of the final ELF binary
done by Multi2Sim. Specifically, each ELF section is dumped into a separate file. The same is
done for those binary file portions pointed to by ELF symbols.

175

Fat binaries
Fat binaries are a Multi2Sim-specific file format based on ELF that packs multiple AMD binaries into
one single file. Fat binaries are generated when more than one device is specified with option
––amd-device as a list of devices separated by commas. For each device, m2c internally creates the
associated AMD binary, and packs it into an ELF section of the fat binary.
Additionally, a symbol table in the fat binary includes one symbol per embedded AMD binary. Each
ELF symbol has the following properties:

• Field name is set to the name of the specific target device.
• Field value is set to a unique identifier of the target device. This value is equal to the e_machine

field of the ELF header of the embedded AMD binary. The value is useful for quick identification
of the target device without having to extract it.

• Field index points to the ELF section that contains the associated embedded AMD binary.
Fat binaries are optionally used for convenience by the Multi2Sim OpenCL runtime. When an OpenCL
host program running on Multi2Sim loads a fat binary, it is compatible with any of the devices for
which there is an associated embedded AMD binary. The fat binary content can be explored in Linux
using command-line tool readelf -a <fatbinary>.bin.

176

Chapter 14

Tools

14.1 The INI file format
An INI file is a plain text file used to store configuration information and statistic reports for programs.
Multi2Sim uses this format for all of its input and output files, such as context configuration or cache
hierarchy configuration files. This format is also used in Multi2Sim for output files, such as detailed
simulation statistics reports. This is an example of a text file following the INI file format:

; This is a comment
[Button Accept]
Height = 20
Width = 40
Caption = ’OK’

[Cancel]
State = Disabled

Each line of an INI file can be a comment, a section name, or a variable-value pair. A comment is a
line starting with a semicolon; a section name is given as a string set off by square brackets (e.g., [
Button Accept]); and a variable-value pair is represented by separating the variable name and its value
with an = sign. Section and variable names are case-sensitive in Multi2Sim.
The user can specify the values for an integer variable in decimal, hexadecimal, and octal formats. The
latter two formats use the 0x and 0 prefixes, respectively. Integer variables can also include suffixes K,
M, and G to multiply the number by 103, 106, and 109, respectively. Lower-case suffixes k, m, and g

multiply the number by 210, 220, and 230, respectively.

The inifile.py tool
The inifile.py tool can be found in the tools/inifile directory within the Multi2Sim distribution
package. It is a Python script aimed at automatically analyzing and modifying INI files, avoiding their
manual edition. The command-line syntax of the program can be obtained by executing it without
arguments. To illustrate its functionality by an example, let us run a simulation of the test-args and
test-sort benchmarks on a 2-threaded processor model, by using the files provided in the samples

directory. Run the following command under the samples/x86 directory:

m2s --x86-sim detailed --ctx-config ctx-config-args-sort --x86-config x86-config-args-sort \
--x86-report x86-report

This command uses the ctx-config-args-sort context configuration file, which allocates benchmark

177

test-args in context 0, and benchmark test-sort in context 1. Likewise, it uses the
x86-config-args-sort to set up 2 threads, and dumps a detailed pipeline statistics report into file
x86-report. All ctx-config-args-sort, x86-config-args-sort, and x86-report files follow the INI file
format. After running this simulation, let us analyze the obtained results with the inifile.py script.

Reading INI files
As shown in Section 2.21, the pipeline statistics report includes one section per core, thread, and
complete processor. Type the following commands:

inifile.py x86-report read c0t0 Commit.Total
inifile.py x86-report read c0t1 Commit.Total
inifile.py x86-report read c0 Commit.Total

These commands return the number of committed instructions in thread 0, thread 1, and core 0.
Since threads 0 and 1 are contained in core 0, the third output value is equal to the sum of the two
first values.

Writing on an INI file
To show how to modify the contents of an INI file, the following example changes the context
configuration file using inifile.py:

inifile.py ctx-config-args-sort remove "Context 0" StdOut
m2s --x86-sim detailed --ctx-config ctx-config-args-sort --x86-config x86-config-args-sort \

--x86-report x86-report
inifile.py ctx-config-args-sort write "Context 0" StdOut context-0.out

The first line removes the parameter StdOut in the [Context 0] section. Then, the second line reruns
the simulation with the new context file. Since the redirection of the standard output has been
removed, the test-args benchmark dumps its output to screen. Finally, the third line restores the
original contents of the context file, by adding the StdOut parameter again.

Using scripts to edit INI files
Every time the inifile.py tool is called, it analyzes the complete structure of the INI file before
performing the requested action on it. For large INI files, this can entail some costly work, which
becomes redundant when several actions are performed on the same file. In this case, it is possible to
parse the INI file only the first time, by using an inifile.py script, as follows:

script=$(mktemp)
echo "read c0 Commit.Total" >> $script
echo "read c0t0 Commit.Total" >> $script
echo "read c0t1 Commit.Total" >> $script
inifile.py x86-report run $script
rm -f $script

The code above creates a temporary file (command mktemp), whose name is stored in variable script.
Then, three read actions are stored into the script to retrieve the number of committed instructions in
core 0, thread 0, and thread 1. Finally, the inifile.py tool is executed with the run command, using
the script file name as last argument. The result obtained by each read command is presented in a
new line on screen.

178

14.2 McPAT: Power, Area, and Timing Model
McPAT is an integrated power, area, and timing modeling framework that supports comprehensive
design space exploration for multicore and manycore processor configurations ranging from 90nm to
22nm and beyond [19]. The tool and the technical report describing it can be downloaded in the
following link:

http://www.hpl.hp.com/research/mcpat

McPAT provides a flexible XML interface that can interact with a properly modified performance
simulator. Through a plain-text file in XML format, McPAT receives the architectural parameters and
technological features of the modeled processor, as well as some structure access statistics provided by
a performance simulator. With this information, the tool dumps power, area, and timing statistics for
the computed design.
McPAT uses the Cacti tool [20] to obtain the models for the on-chip data arrays, CAM tables, and
cache structures. It also uses its own power, area, and timing models for combinational logic, such as
functional units, results broadcast buses, instruction wakeup logic, or interconnection networks.

McPAT input file
The following is en excerpt of an XML McPAT input file specifying the characteristics and activity of
the instruction cache:
<component id="system.core0.icache" name="icache">

<param name="icache_config" value="131072,32,8,1,8,3,32,0"/>
<param name="buffer_sizes" value="16,16,16,0"/>
<stat name="read_accesses" value="1000"/>
<stat name="read_misses" value="56"/>
<stat name="conflicts" value="3"/>

</component>

In this example, the <param> entries specify the cache geometry and cache controller buffer sizes,
respectively. The <stat> entries give the read accesses, read misses, and cache line conflicts occurred
during a performance simulation carried out previously on top of Multi2Sim.
By analyzing this data, jointly with some other global technological data such as feature size or clock
frequency, McPAT can estimate the area, access time, and both dynamic and leakage energy
dissipated during the execution of the simulated benchmarks.

Interaction with Multi2Sim
Multi2Sim has been adapted to provide those statistics that McPAT requires in its input file. Though
the processor models provided by McPAT and Multi2Sim are not exactly the same, still some common
configurations can be obtained to estimate the global energy dissipated for a given benchmark
execution. The correspondence between the Multi2Sim statistics and McPAT input parameters is
given in Appendix II at the end of this document.

McPAT output
Table 14.1 shows a list of the hardware components whose area, access time, and energy is detailed in
the McPAT output. These components are classified hierarchically, and statistics are given both
individually and in groups. For each of the listed elements, the following values are reported:

• Area (mm2).

179

Table 14.1: Hardware components reported by McPAT

• Peak dynamic power (W).
• Subthreshold and gate leakage power (W).
• Average runtime dynamic power (W).

Since these values are given separately for each processor structure, the energy dissipation associated
to each component can be independently evaluated. For example, an alternative design can be
proposed for a given processor structure (such as a register file or data cache), and its physical
properties can be evaluated with the Cacti tool [20]. Then, the Cacti results can be combined with the
McPAT output, and the global power, energy, and area can be obtained for the proposed design.

180

Chapter 15

Coding Guidelines

Multi2Sim follows some standard coding guidelines closely resembling those for the Linux kernel. This
chapter described some basic code formatting rules, and other standards followed by the Multi2Sim
developers:

15.1 General Formatting Rules

Indenting
Tabs should be used for indenting. It is recommended to configure your editor with a tab size of 8
spaces for a coherent layout with other developers of Multi2Sim.

Line wrapping
Lines should have an approximate maximum length of 80 characters, including initial tabs (and
assuming a tab counts as 8 characters). If one line of code has to be split, two tabs should be inserted
at the beginning of the next line. For example:

int long_function_with_many_arguments(int argument_1, char *arg2,
struct my_type_t *arg3)

{
/* Function body */

}

Comments
Comments should not use the double slash (//) notation. They should use instead the standard /*

Text */ notation. Multiple-line comments should use a * character at the beginning of each new line,
respecting the 80-character limit of the lines.

/* This is an example of a comment that spans multiple lines. When the
* second line starts, an asterisk is used. */

Code blocks
Brackets in code blocks should not share a line with other code, both for opening and closing brackets.
The opening parenthesis should have no space on the left for a function declaration, but it should have

181

it for if, while, and for blocks. Examples:

void function(int arg1, char *arg2)
{
}

if (cond)
{

/* Block 1 */
}
else
{

/* Block 2 */
}

while (1)
{
}

In the case of conditionals and loops with only one line of code in their body, no brackets need to be
used. The only line of code forming their body should be indented one position.

for (i = 0; i < 10; i++)
only_one_line_example();

if (!x)
a = 1;

else
b = 1;

while (list_count(my_list))
list_remove_at(my_list, 0);

Enumerations
Enumeration types should be named enum <xxx>_t, without using any typedef declarations. For
example:

enum my_enum_t
{

err_list_ok = 0,
err_list_bounds,
err_list_not_fount

};

Memory allocation
Dynamic memory allocation should be done using functions xmalloc, xcalloc, xrealloc, and xstrdup,
defined in ’lib/mhandle/mhandle.h’. These functions internally call their corresponding malloc, calloc,
realloc, and strdup, and check that they return a valid pointer, i.e., enough memory was available to
be allocated. For example:

void *buf;
char *s;

buf = xmalloc(100);
s = xstrdup("hello");

182

Forward declarations
Forward declarations should be avoided. A source file .c in a library should have two sections (if used)
declaring private and public functions. Private functions should be defined before they are used to
avoid forward declarations. Public functions should be included in the .h file associated with the .c

source (or common for the entire library). For example:

/*
* Private Functions
*/

static void func1()
{

...
}

[2 line breaks]

static void func2()
{

...
}

[4 line breaks]

/*
* Public Functions
*/

void public_func1()
{

...
}

Variable declaration
Variables should be declared only at the beginning of code blocks (can be primary or secondary code
blocks). Variables declared for a code block should be classified in categories, such as type, or location
of the code where they will be used. Several variables sharing the same type should be listed in
different lines. For example:

183

static void mem_config_read_networks(struct config_t *config)
{

struct net_t *net;
int i;

char buf[MAX_STRING_SIZE];
char *section;

/* Create networks */
for (section = config_section_first(config); section;

section = config_section_next(config))
{

char *net_name;

/* Network section */
if (strncasecmp(section, "Network ", 8))

continue;
net_name = section + 8;

/* Create network */
net = net_create(net_name);
mem_debug("\t%s\n", net_name);
list_add(mem_system->net_list, net);

}
}

Function declaration
When a function takes no input argument, its declaration should use the (void) notation, instead of
just (). If the header uses the empty parentheses notation, the compiler sets no restrictions in the
number of arguments that the user can pass to the function. On the contrary, the (void) notation
forces the caller to make a call with zero arguments to the function.
This affects the function declaration in a header file, a forward declaration in a C file, and the header
of the function definition in the C file.
Example:

/* Header file or forward declaration */
void say_hello(void);

/* Function implementation */
void say_hello(void)
{

printf("Hello\n");
}

Spaces
Conditions and expressions in parenthesis should be have a space on the left of the opening
parenthesis. Arguments in a function and function calls should not have a space on the left of the
opening parenthesis.

if (condition)
while (condition)
for (...)
void my_func_declaration(...);
my_func_call();

184

No spaces are used after an opening parenthesis or before a closing parenthesis. One space used after
commas.

if (a < b)
void my_func_decl(int a, int b);

Spaces should be used on both sides of operators, such as assignments or arithmetic:

var1 = var2;
for (x = 0; x < 10; x++)
a += 2;
var1 = a < 3 ? 10 : 20;
result = (a + 3) / 5;

Type casts should be followed by a space:

printf("%lld\n", (long long) value);

Integer types
Integer variables should be declared using built-in integer types, i.e., avoiding types in stdint.h

(uint8_t, int8_t, uint16_t, ...). The main motivation is that some non-built-in types require type casts
in printf calls to avoid warnings. Since Multi2Sim is assumed to run either on an x86 or an x86-64
machine, the following type sizes should be used:

• Unsigned 8-, 16-, 32-, and 64-bit integers:

– unsigned char

– unsigned short

– unsigned int

– unsigned long long

• Signed 8-, 16-, 32-, and 64-bit integers:

– char

– short

– int

– long long

Integer types long and unsigned long should be avoided, since they compile to different sizes in 32- and
64-bit platforms.

15.2 Source and Header Files

Code organization
After SVN Rev. 1087, most of the files in Multi2Sim are organized as pairs of header (.h) and source
(.c) files, with the main exception being the Multi2Sim program entry src/m2s.c. Every public symbol
(and preferably also private symbols) used in a pair of header and source files should use a common
prefix, unique for these files. For example, prefix x86_inst_ is used in files src/arch/x86/emu/inst.h and
src/arch/x86/emu/inst.c.

185

Structure of a source file
In each source file, the copyright notice should be followed by a set of #include compiler directives.
The source file should include only those files containing symbols being used throughout the source,
with the objective of keeping dependence tree sizes down to a minimum. Please avoid copying sets of
#include directives upon creation of a new file, and add instead one by one as their presence is required.
Compiler #include directives should be classified in three groups, separated with one blank line:

• Standard include files found in the default include directory for the compiler (assert.h, stdio.h,
etc), using the notation based on < > brackets. The list of header files should be ordered
alphabetically.

• Include files located in other directories of the Multi2Sim tree. These files are expressed as a
relative path to the src directory (this is the only additional default path assumed by the
compiler), also using the < > bracket notation. Files should be ordered alphabetically.

• Include files located in the same directory as the source file, using the double quote " " notation.
Files should be ordered alphabetically.

Each source file should include all header files defining the symbols used in its code, and not rely on a
multiple inclusion (i.e., a header file including another header file) for this purpose. In general, header
files will not include any other header file.
For example:

/*
* Multi2Sim
* Copyright (C) 2012
* [...]
*/

--- One blank line ---

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>

#include <lib/mhandle/mhandle.h>
#include <lib/util/debug.h>
#include <lib/util/list.h>

#include "emu.h"
#include "inst.h"

--- Two blank lines ---

[Body of the source file]

--- One blank line at the end of the file ---

Structure of a header file
The contents of a header file should always be guarded by an #ifdef compiler directive that avoid
multiple or recursive inclusions of it. The symbol following #ifdef should be the equal to the path of
the header file relative to the simulator src directory, replacing slashes and dashes with underscores,
and using capital letters.
For example:

186

/*
* Multi2Sim
* Copyright (C) 2012
* [...]
*/

--- One blank line ---

#ifndef ARCH_X86_EMU_CONTEXT_H
#define ARCH_X86_EMU_CONTEXT_H

--- Two blank lines ---

[’#include’ lines go here, with the same format and spacing as for
source files. But in most cases, there should be no ’#include’ here at
all!]

[Body of the header file, with structure, ’extern’ variables, and
function declarations]

--- Two blank lines ---

#endif

Avoiding multiple inclusions
The objective of avoiding multiple inclusions is keeping dependence trees small, and thus speeding up
compilation upon modification of header files. A multiple inclusion occurs when a header file includes
another header file. In most cases, this situation can avoided with the following techniques:

• If a structure defined in a header file contains a field defined as a pointer to a structure defined
in a different header file, the compiler does not need the latter structure to be defined. For
example, structure

struct x86_context_t
{

struct x86_inst_t *current_inst;
}

defined in file context.h has a field of type struct x86_inst_t * defined in inst.h. However,
inst.h does not need to be included, since the compiler does not need to know the size of the
substructure to reserve memory for a pointer to it.

• If a function defined in a header file contains an argument whose type is a pointer to a structure
defined in a different header file, the latter need not be included either. Instead, a forward
declaration of the structure suffices to get rid of the compiler warning. For example:

struct dram_device_t;
void dram_bank_create(struct dram_device_t *device);

In the example above, function dram_bank_create would be defined in a file named dram-bank.h,
while structure struct dram_device_t would be defined in dram-device.h. However, the latter file
does not need to be included as long as struct dram_device_t is present as a forward declaration
of the structure.

Exceptions:
• When a derived type (type declared with typedef) declared in a secondary header file is used as a

member of a structure or argument of a function declared in a primary header file, the secondary

187

header file should be included as an exception. This problem occurs often when type FILE * is
used in arguments of xxx_dump() functions. In this case, header file stdio.h needs to be included.

• When a primary file defines a structure using a field of type struct (not a pointer) defined in a
secondary header file, the secondary header file needs to be included. In this case, the compiler
needs to know the exact size of the secondary structure to allocate space for the primary.
For example, structure struct evg_bin_format_t has a field of type struct elf_buffer_t. Thus,
header file bin-format.h needs to include elf-format.h.

15.3 Object-Oriented Programming
Although Multi2Sim is written in C, its structure is based in a set of dynamically allocated objects (a
processor core, a hardware thread, a micro-instruction, etc.), emulating the behavior of an object
oriented language.
An object is defined with a structure declaration (struct), one or more constructor and destructor
functions, and a set of other functions updating or querying the state of the object.
The structure and function headers should be declared in the .h file associated with the object, while
the implementation of public functions (plus other private functions, structures, and variables) should
appear in its associated .c file. In general, every object should have its own pair of .c and .h files
implementing and encapsulating its behavior.
As an example, let us consider the object representing an x86 micro-instruction, called x86_uop_t and
defined in src/arch/x86/timing/uop.h. The implementation of the object is given in an independent
associated C file in src/arch/x86/timing/uop.c.
The constructor and destructor of all objects follow the same template. An object constructor returns a
pointer to a new allocated object, and takes zero or more arguments, used for the object initialization.
The code in the constructor contains two sections: initialization and return, as shown in this example:

struct my_struct_t *my_struct_create(int field1, int field2)
{

struct my_struct_t *my_struct;

/* Initialize */
my_struct = xcalloc(1, sizeof(struct my_struct_t));
my_struct->field1 = field1;
my_struct->field2 = field2;
my_struct->field3 = 100;

/* Return */
return my_struct;

}

An object destructor takes a pointer to the object as the only argument, and returns no value:

void my_struct_free(struct my_struct_t *my_struct)
{

[... free fields ...]
free(my_struct);

}

188

15.4 Classes
SVN Rev. 1962 adds support for classes in Multi2Sim to improve the object-oriented programming
experience. The goal is forcing the programmer to increase the modularity, and reducing the amount
of boilerplate code needed to implement the mechanisms proposed in Section 15.3.
Multi2Sim classes support single inheritance, polymorphism, virtual functions, and a complete type
safety.
To illustrate the different features of Multi2Sim classes, let us use an example of a class hierarchy
implementing geometric shapes. A base class Shape represents a generic shape, with subclasses Circle,
Triangle, and Rectangle. Class Rectangle can be further specialized in subclass Square.
A class is defined in a pair of files: one header (.h) and a source (.c) file. The following steps are
required to create the new class Shape:

• A new entry must be added in file src/lib/class/class.dat to provide a global definition of the
new class: CLASS(Shape). A variable of type Shape then be instantiated in any file of the project
that includes header <lib/class/class.h>.

• Create the class header file shape.h in any directory of the project, and define the class using the
CLASS_BEGIN and CLASS_END macros. The first argument of both macros is the class name, while
the second argument of CLASS_BEGIN is the parent class. If a class has no parent, it should inherit
from class Object.

CLASS_BEGIN(Shape, Object)

char *name;
int other_field;
[...]

CLASS_END(Shape)

• Create the class source file shape.c in the same directory as the class header, containing the
functions related with the class. All functions associated with the class must be prefixed with
the class name, and must take a pointer to the class (or any parent type) as their first argument.

• Create a default class constructor and destructor. The prototype of a constructor has a first
argument being a pointer to the class, optionally followed by additional arguments. The
destructor only takes one argument being the pointer to the class. Both the constructor and
destructor return void.
Constructors and destructors are named with the class identifier followed by Create/Destroy
Additional constructors can be created by adding other suffixes (e.g., ShapeCreateWithName).
Class constructors and destructors shouldn’t allocate/deallocate memory for the class instance
itself (this is done by the caller with macros new and delete). Constructors and destructors
should only worry about possible allocation and deallocation of memory needed by any field of
the class. In the following example, the constructor and destructor of class Shape only need to
manage the memory associated with field name:

189

void ShapeCreate(Shape *self)
{

self->name = xstrdup("<anonymous>");
}

void ShapeCreateWithName(Shape *self, char *name)
{

self->name = xstrdup(name);
}

void ShapeDestroy(Shape *self)
{

free(self->name);
}

• The new class should be registered in the beginning of the execution of the program with a call
to CLASS_REGISTER(Shape). A panic message will occur if an object of an unregistered class is
instantiated. In debug mode, this message will include the exact class name, plus the source file
and line number where the instantiation happened.

Symbol names
Symbol naming rules for class-related code have been defined resembling the C++ coding standard.
Particularly, the LLVM coding standard is used as a reference.

• Class names use capitalization and no underscore symbols in their names when multiple words
are used to form an identifier (e.g., MyClass).

• Class functions are capitalized and use the class name as their prefix (e.g., MyClassCreate,
MyClassDestroy).

• Enumerations used for fields in the class are capitalized and defined with typedef. The
enumeration type, as well as all elements in the enumeration, should have the class name as a
prefix.

• Variable names should be lower case, using underscore symbols to connect multiple words into
one identifier (e.g., my_class_instance).

Class instantiation
Class instances are created and destroyed with functions new, new_ctor, and delete. These functions
have the following syntax:

class_instance = new(ClassName, ...);
class_instance = new_ctor(ClassName, Constructor, ...);
delete(class_instance);

Function new allocates memory for a new instance of the class given in ClassName and calls its default
constructor ClassNameCreate, passing the rest of the arguments to it. Function new_ctor instantiates a
class with a constructor other than the default. Two instances of class Shape can be created with its
different constructors with the following code:

Shape *shape1 = new(Shape);
Shape *shape2 = new_ctor(Shape, CreateWithName, "second shape");
delete(shape1);
delete(shape2);

190

Polymorphism
Every new class named ClassName automatically defines two functions called asClassName() and
isClassName():
Function asClassName() takes a class instance as an argument and casts it into class ClassName. A
dynamic cast is only legal between related classes, i.e., between classes that are direct or indirect
parents or children of one another. In debug mode, dynamic casts are verified at runtime. In
non-debug mode, an illegal dynamic cast is silently skipped, and causes undefined behavior. In
non-debug mode, a dynamic cast has zero overhead.
Function isClassName() takes a class instance as an argument as well, and returns true if the object is
an instance of, or is related to ClassName (i.e., it is one of its parents or children). A call to
isClassName(NULL) always returns true. This function is internally implemented as a pointer-chasing
algorithm, with the maximum number of iterations being the number of inherited classes between the
inspected instance and class Object.

Shape *shape1 = asShape(new(Square)); // Valid cast
Square *square1 = asSquare(new(Circle)); // Invalid cast
Square *square2 = new(Square);

ObjectDump(asObject(shape1), stdout); // Valid cast

printf("%d\n", isSquare(shape1)); // Prints "1"
printf("%d\n", isRectangle(shape1)); // Prints "1"
printf("%d\n", isTriangle(square2)); // Prints "0"
printf("%d\n", isObject(square2)); // Prints "1"
printf("%d\n", isCircle(NULL)); // Prints "1"

Virtual functions
Virtual functions in a parent class are overridden or extended in a child class. They are defined as
function pointers fields in the parent class, and a value is assigned to this pointers in the child class’s
constructor. For example, let us consider function Dump as a virtual function present in class Object,
and defined as follows:

CLASS_BEGIN(Object, <null>)

[...]
void (*Dump)(FILE *f);
[...]

CLASS_END(Object)

While class Object gives a default implementation for function Dump that prints the instance class name
with all its descendance, this function can be overridden by subclasses of Shape to print the new fields
associated with them. For example, we could create function CircleDump to print the circle’s radius.
The constructor of class circle should also assign a value to function pointer Dump:

191

void CircleCreate(Circle *self, int radius)
{

/* Initialize */
self->radius = radius;

/* Virtual functions */
asObject(self)->Dump = CircleDump;

}

void CircleDump(Object *self, FILE *f)
{

/* Optionally, call original implementation */
ObjectDump(self, f);

/* Print circle-specific fields */
fprintf(f, "Radius = %d\n", asCircle(self)->radius);

}

Notice that the implementation of the overridden function CircleDump must declare its first argument
(the class object) of the same type as the first ancestor class that defined the virtual function, in order
to make the function assignment type-compatible in the constructor. The overridden virtual function
can optionally call its parent version by invoking it directly with ObjectDump.
When the body of function CircleDump accesses fields of class Circle, it can safely do it with a dynamic
cast to this class (e.g., asCircle(self)->radius).

Invoking virtual functions
In the example above, where class Circle overrides virtual function Dump of its ancestor class Object,
there are three possible ways of invoking the function:

• If we want an instance of Circle to be printed using only the original version of Dump given in
class Object, function ObjectDump can be invoked directly.

• For an instance of Circle (or a variable of type Object that can be safely cast into Circle), we
can call the overridden version of Dump by directly calling function CircleDump.

• For a variable object of type Object that may or may not be a Circle, we can invoke its lower
descendant’s version of Dump with object->Dump(object, f). If the instance is actually a Circle,
function CircleDump is effectively invoked. If it is not a Circle, either ObjectDump will be invoked,
or any other overridden version of it based on the actual instance.

The latter option shows the flexibility of virtual functions. We can override the Dump function for
classes Rectangle, Triangle, Circle, and Square. We could then create a list that stores shapes of
different types, and then invoke virtual function Dump for all of them. Depending on the type of the
shape, a particular version of the function will be effectively invoked.

Type safety vs performance
The class mechanism included in Multi2Sim has been designed to provide high type safety in debug
mode (i.e., when script ./configure is launched with the ––enable-debug modifier), and guaranteeing
performance when the simulator is compiled in release (non-debug) mode. It also reduces the amount
of code to type compared to other publicly available object-oriented mechanisms in C.
The following considerations help understand the underlying model:

• Type safety at compile time is guaranteed when passing arguments to the class constructors in
calls to new and new_ctor. These calls are actually macro calls that translate, among others, into

192

an actual call to the constructors, and thus, they allow the compiler to detect any argument type
mismatch.

• Assignments to virtual functions in the class constructors are done in a completely type-safe
manner as well. If the function prototype of the parent class field (e.g., Object->Dump) does not
match exactly with the prototype of the child class implementation (e.g., CircleDump), the
compiler produces an error.

• Dynamic casts between parent and child classes (e.g., asObject, asTriange, ...) are implemented
as inline functions that conditionally verify that the cast is valid. In debug mode, casting a class
instance to an incompatible type causes a runtime panic message, allowing the programmer to
quickly identify the source of the problem. In non-debug mode, a class type cast does not
produce any code at all, and its only purpose is providing compatible types at compile time.

• When instantiating a child class, its parent is contained physically as part of the memory
allocated for the child, and one single memory region is allocated for both (as opposed to
different memory regions pointing to each other). This allows for efficient accesses to parent
class fields. For example, in an object circle of type Circle, it is equivalent in terms of
performance (and only in release compilation mode) to access field asObject(circle)->Dump or
field circle->radius.

193

Appendix I. Event Flow Diagrams for the
NMOESI Protocol

LOAD function

194

STORE function

195

NC_STORE function

196

FIND_AND_LOCK function

INVALIDATE function

197

EVICT function

198

READ_REQUEST function

199

WRITE_REQUEST function

200

PEER function

MESSAGE function

201

Appendix II. Correspondence between
McPAT and Multi2Sim Statistics

McPAT Multi2Sim
XML component Statistic Section Statistic
system total_cycles global Cycles

idle_cycles — —
busy_cycles global Cycles

system.core0 total_instructions c0 Dispatch.Total
int_instructions c0 Dispatch.Integer
fp_instructions c0 Dispatch.FloatingPoint
branch_instructions c0 Dispatch.Ctrl
branch_mispredictions c0 Commit.Mispred
load_instructions c0 Dispatch.Uop.load
store_instructions c0 Dispatch.Uop.store
committed_instructions c0 Commit.Total
committed_int_instructions c0 Commit.Integer
committed_fp_instructions c0 Commit.FloatingPoint
pipeline_duty_cycle c0 Commit.DutyCycle
total_cycles1 — —
idle_cycles — —
busy_cycles — —
ROB_reads c0(t0) ROB.Reads
ROB_writes c0(t0) ROB.Writes
rename_reads c0t0 RAT.Reads
rename_writes c0t0 RAT.Writes
fp_rename_reads2 — —
fp_rename_writes — —
inst_window_reads c0(t0) IQ.Reads
inst_window_writes c0(t0) IQ.Writes
inst_window_wakeup_accesses c0(t0) IQ.WakeupAccesses
fp_inst_window_reads2 — —
fp_inst_window_writes — —
fp_inst_window_wakeup_accesses — —
int_regfile_reads c0(t0) RF.Reads
int_regfile_writes c0(t0) RF.Writes
float_regfile_reads2 — —
float_regfile_writes — —
function_calls c0 Dispatch.Uop.call
context_switches c0 Dispatch.WndSwitch
ialu_accesses c0 Issue.SimpleInteger
fpu_accesses c0 Issue.FloatingPoint
mul_accesses c0 Issue.ComplexInteger
cdb_alu_accesses3 — —
cdb_fpu_accesses3 — —
cdb_mul_accesses3 — —
IFU_duty_cycle3 — —
LSU_duty_cycle3 — —
MemManU_I_duty_cycle3 — —
MemManU_D_duty_cycle3 — —
ALU_duty_cycle3 — —

Continued on Next Page. . .

202

XML component Statistic Section Statistic
MUL_duty_cycle3 — —
FPU_duty_cycle3 — —
ALU_cdb_duty_cycle3 — —
MUL_cdb_duty_cycle3 — —
FPU_cdb_duty_cycle3 — —

system.core0.BTB read_accesses c0t0 BTB.Reads
write_accesses c0t0 BTB.Writes

system.core0.itlb total_accesses itlb.0.0 Accesses
total_misses itlb.0.0 Misses
conflicts itlb.0.0 Evictions

system.core0.icache read_accesses il1-0 Reads
read_misses il1-0 ReadMisses
conflicts il1-0 Evictions

system.core0.dtlb total_accesses dtlb.0.0 Accesses
total_misses dtlb.0.0 Misses
conflicts dtlb.0.0 Evictions

system.core0.dcache read_accesses dl1-0 Reads
write_accesses dl1-0 Writes
read_misses dl1-0 ReadMisses
write_misses dl1-0 WriteMisses
conflicts dl1-0 Evictions

1McPAT uses these values for heterogeneous cores only, which are not supported under Multi2Sim.
2Multi2Sim does not model separate renaming tables, register files, or instruction queues for integer and floating-point

registers.
3The meaning of these stats is unclear or is not documented by the McPAT developers, so the statistics do not have a

correspondence yet.

203

Appendix III. X86 Micro-Instruction Set

Micro-instruction: move

Functional unit: None

Move the contents of an integer register into another. Source and destination operands of this
micro-instruction can only be integer general purpose registers (eax, ebx, ecx, edx, esi, edi), segment
registers (es, cs, ss, ds, fs, gs), or status flags (zps, of, cf, df).

Micro-instruction: add, sub

Functional unit: Integer adder

Integer addition and subtraction. Both types of micro-instructions are executed on the integer adder
functional unit.

Micro-instruction: mult

Functional unit: Integer multiplier

Integer multiplication.

Micro-instruction: div

Functional unit: Integer divider

Integer division and modulo.

Micro-instruction: effaddr

Functional unit: Address computer

204

Effective address computation for memory accesses. For those instruction where an operand is a
memory location, the effective address needs to be computed before. For example, the operand
[ebx+0x4] in an x86 CISC instruction will generate an initial effaddr micro-instruction calculating the
memory address by adding the contents of register ebx plus 4.

Micro-instruction: and, or, xor, not

Functional unit: Logic unit

Bitwise AND, OR, XOR, and NOT. All of them are executed on a functional unit devoted to logic
operations.

Micro-instruction: shift

Functional unit: Logic unit

This micro-instruction is used for bit shifts or bit rotation operations. It is executed on the logic
functional unit.

Micro-instruction: sign

Functional unit: Logic unit

Sign change. This micro-instruction is used for integer operations that just involve the sign bit of an
integer number, such as absolute value computation, or sign switch. Since it involves a simple bit
alteration, it is assumed to be executed on the logic unit.

Micro-instruction: fadd, fsub, fcomp

Functional unit: Floating-point adder

Floating-point addition, subtraction, and comparison. These micro-instructions are all executed on the
floating-point adder functional unit. A comparison of two floating-point number involves subtracting
them and checking the properties of the result.

Micro-instruction: fmult

Functional unit: Floating-point multiplier

Floating-point multiplication.

205

Micro-instruction: fdiv

Functional unit: Floating-point divider

Floating-point division.

Micro-instruction: fexp, flog, fsin, fcos, fsincos, ftan, fatan, fsqrt

Functional unit: Floating-point complex operator

Floating-point computation of an exponential value, floating-point logarithm, sine, cosine, combined
sine/cosine, tangent, arctangent, and square root, respectively. All these operations are assumed to be
implemented in hardware on a complex floating-point functional unit.

Micro-instruction: fpush, fpop

Functional unit: None

Push/pop a value into/from the floating-point stack. These two micro-instructions affect the
floating-point stack pointer, which in turn causes the operants of floating-point operations (st0, st1,
...) to be interpreted differently before being mapped to physical registers. See Section 2.12 for further
information about floating-point register renaming.

Micro-instruction: x-and, x-or, x-xor, x-not, x-shift, x-sign

Functional unit: XMM logic unit

XMM micro-instructions performing logic operations on 128-bit values.

Micro-instruction: x-add, x-sub, x-comp, x-mult, x-div

Functional unit: XMM integer unit

XMM micro-instructions performing integer operations on 128-bit double quad-words.

Micro-instruction: x-fadd, x-fsub, x-fcomp, x-fmult, x-fdiv, x-fsqrt

Functional unit: XMM floating-point unit

XMM micro-instruction performing floating-point operations on 128-bit XMM registers.

206

Micro-instruction: x-move, x-shuf

Functional unit: XMM logic unit

Move and shuffle bits between XMM registers, or between XMM and general-purpose x86 registers.

Micro-instruction: x-conv

Functional unit: XMM floating-point unit

Conversion between integer and floating-point values in 128-bit XMM registers.

Micro-instruction: load, store

Functional unit: Memory hierarchy

Memory read and write to the data cache. These micro-instructions usually follow an effective address
computation. As opposed to the rest of micro-instructions, the latency of memory operations is
variable, depending on the presence of blocks in data caches of the contention in the memory
hierarchy interconnects.

Micro-instruction: call, ret

Functional unit: None

Call to and return from a function. These micro-instructions affect the control flow of the program.
For branch prediction, they affect the return address stack (RAS), where function return addresses are
pushed and popped (see Section 2.9). These micro-instructions do not require any functional unit to
execute.

Micro-instruction: jump, branch

Functional unit: None

Unconditional jump and conditional branch, affecting the control flow of the program. In conditional
branches, the branch predictor will provide a direction prediction for the branch in the fetch stage. The
actual branch condition usually depends on the value of x86 flags (CF, OF, etc.). These
micro-instructions do not require any functional unit to execute.

Micro-instruction: ibranch

Functional unit: None

207

Internal branch into microcode. This micro-instruction is used when decoding an x86 string operation
to jump into an intermediate location within the sequence of generated micro-instructions. See
Section 2.7 for more details on string operations decoding.

Micro-instruction: syscall

Functional unit: None

Micro-instruction for a system call. This instruction can only be executed in non-speculative mode.
Since the operating system is not modeled in Multi2Sim, all actions performed during a system call
execution are modeled as a single syscall micro-instruction. This is the principle of the
application-only simulation model. On one hand, it is less acurate than a full-system simulation with
an operating system running on the simulator. On the other hand, simulation speed is much higher,
while it allows us to focus just on the benchmarks simulation.

208

Bibliography

[1] Tse-Yu Yeh and Yale N. Patt. A Comparison of Dynamic Branch Predictors that Use two Levels
of Branch History. In Proc. of the 20th Int’l Symposium on Computer architecture, 1993.

[2] Tse-yu Yeh, Deborah T. Marr, and Yale N. Patt. Increasing the Instruction Fetch Rate via
Multiple Branch Prediction and a Branch Address Cache. In Proc. of the 7th ACM Conference on
Supercomputing, 1993.

[3] Intel Corporation. Intel Architecture – Software Developer’s Manual, Volume 2: Instruction Set
Reference.

[4] E. Rotenberg, J. Smith, and S. Bennett. Trace Cache: a Low Latency Approach to High
Bandwidth Instruction Fetching. In Proc. of the 29th Int’l Symposium on Microarchitecture, 1996.

[5] X. Qian, H. Huang, Z. Duan, J. Zhang, N. Yuan, Y. Zhou, H. Zhang, H. Cui, and D. Fan.
Optimized Register Renaming Scheme for Stack-Based x86 Operations, volume 4415 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2007.

[6] MIPS Technologies, Inc. Open Source Toolchain, Linux.
http://developer.mips.com/tools/compilers/open-source-toolchain-linux/.

[7] Multi2Sim Bugzilla. http://www.multi2sim.org/bugzilla.

[8] ARM Cross-Compilation Tool Chain.
https://aur.archlinux.org/packages/arm-2010.09-50-arm-none-linux-gnueabi/.

[9] The Khronos Group The OpenCL Standard. www.khronos.org/opencl.

[10] AMD. Evergreen Family Instruction Set Architecture: Instructions and Microcode.
www.amd.com, Feb. 2011.

[11] AMD. AMD Accelerated Parallel Processing OpenCL Programming Guide.
http://developer.amd.com/GPU/AMDAPPSDK/, Jan. 2011.

[12] R. Ubal, J. Sahuquillo, S. Petit, and P. López. Multi2Sim: A Simulation Framework to Evaluate
Multicore-Multithreaded Processors. In Proc. of the 19th Int’l Symposium on Computer
Architecture and High Performance Computing, Oct. 2007.

[13] AMD Accelerated Parallel Processing (APP) Software Development Kit (SDK).
www.amd.com/stream.

[14] P. Sweazey and A. J. Smith. A Class of Compatible Cache Consistency Protocols and Their
Support by the IEEE Futurebus. In Proc. of the 13th International Symposium on Computer
architecture, June 1986.

209

[15] Milo M. K. Martin. Token Coherence, Ph.D. Dissertation. Dec. 2003.

[16] Condor – High Throughput Computing, 2012. http://research.cs.wisc.edu/condor/.

[17] Sharir M. Structural Analysis: a New Approach to Flow Analysis in Optimizing Compilers. In
New York University, Technical Report no. 15, 1979.

[18] AMD Southern Islands Instruction Set Architecture, Dec. 2012.
http://developer.amd.com/appsdk.

[19] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. McPAT: An
Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore
Architectures. In Proc. of the 42nd Int’l Symposium on Microarchitecture, Dec. 2009.

[20] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. CACTI 6.0: A Tool to Model Large
Caches. Technical report, School of Computing, University of Utah, 2007.

210

	Introduction
	Organization of Multi2Sim's Source Code
	The Four-Stage Architectural Model
	Full-System vs. Application-Only Emulation
	Frequency Domains
	Getting Started

	The x86 CPU Model
	The x86 Simulation Paradigm
	The x86 Statistics Summary
	Compiling and Simulating Your Own Source Code
	The Processor Pipeline
	Branch Prediction
	Multiple Branch Prediction
	CISC Instructions Decoding
	Trace Cache
	The Fetch Stage
	The Decode Stage
	Integer Register Renaming
	Floating-Point Register Renaming
	The Dispatch Stage
	The Issue Stage
	The Writeback Stage
	The Commit Stage
	Support for Parallel Architectures
	Multithreading
	Multicore Architectures
	The Context Scheduler
	Statistics Report

	The MIPS-32 CPU Model
	The MIPS Disassembler
	The MIPS Emulator
	Compiling your own Sources
	Roadmap—Next Features

	The ARM CPU model
	The ARM Disassembler
	The ARM Emulator
	Compiling Your Own Sources
	Roadmap

	OpenCL Execution
	The OpenCL Programming Model
	Runtime Libraries and Device Drivers
	The OpenCL Runtime
	The x86 Back-End
	The Southern Islands Back-End
	Legacy OpenCL Runtime

	The AMD Evergreen GPU Model
	Mapping the OpenCL Model into an AMD Evergreen GPU
	The Evergreen Instruction Set Architecture (ISA)
	The Evergreen GPU Device Architecture
	The Compute Unit Architecture
	The Evergreen GPU Memory Architecture
	The GPU Occupancy Calculator
	Trying it out

	The AMD Southern Islands GPU Model
	Running an OpenCL Kernel on a Southern Islands GPU
	The Southern Islands Instruction Set Architecture (ISA)
	Functional Simulation
	Architectural Simulation
	Trying It Out

	The NVIDIA Fermi GPU Model
	The Fermi Disassembler
	The Fermi Emulator
	Compiling Your Own Sources
	Roadmap

	The Memory Hierarchy
	Memory Hierarchy Configuration
	Examples of Memory Hierarchy Configurations
	Default Configuration
	The NMOESI Cache Coherence Protocol
	Statistics Report

	Interconnection Networks
	Model Description
	Communication Model
	Routing
	Network Configuration
	Example of Network Configuration
	Example of Manual Routing
	Example Using Virtual Channels
	Statistics Report
	Stand-Alone Network Simulation

	M2S-Visual: The Multi2Sim Visualization Tool
	Introduction
	Main Window
	The x86 CPU Visualization
	The Evergreen GPU Visualization
	Memory Hierarchy Visualization

	M2S-Cluster: Launching Massive Simulations
	Introduction
	Requirements
	Installation
	The Client Tool m2s-cluster.sh
	Automatic Creation of Clusters: Verification Scripts
	Benchmark Kits
	Usage Examples

	Multi2C: The Kernel Compiler
	The OpenCL Compiler Front-End
	The Southern Islands Back-End
	The Southern Islands Assembler
	The AMD Compiler Wrapper

	Tools
	The INI file format
	McPAT: Power, Area, and Timing Model

	Coding Guidelines
	General Formatting Rules
	Source and Header Files
	Object-Oriented Programming
	Classes

